Metal-insulator transition for the almost Mathieu operator

We prove that for Diophantine ! and almost every µ; the almost Mathieu operator, (H!;‚;µ“)(n )=“ (n +1 ) +“ (ni 1) +‚ cos 2…(!n+µ)“(n), exhibits localization for ‚> 2 and purely absolutely continuous spectrum for ‚< 2:

[1]  L. Pastur,et al.  The positivity of the Lyapunov exponent and the absence of the absolutely continuous spectrum for the almost‐Mathieu equation , 1984 .

[2]  S. Jitomirskaya,et al.  Power-law subordinacy and singular spectra I. Half-line operators , 1999 .

[3]  F. Delyon,et al.  Purely absolutely continuous spectrum for almost Mathieu operators , 1989 .

[4]  S. Jitomirskaya Anderson localization for the almost Mathieu equation: II. Point spectrum for λ>2 , 1995 .

[5]  Y. Sinai Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .

[6]  P.B.Wiegmann On the singular spectrum of the Almost Mathieu operator. Arithmetics and Cantor spectra of integrable models , 1999, hep-th/9909083.

[7]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[8]  R. Peierls,et al.  Zur Theorie des Diamagnetismus von Leitungselektronen , 1933 .

[9]  S. Jitomirskaya,et al.  Power Law Subordinacy and Singular Spectra.¶II. Line Operators , 2000 .

[10]  B. Simon,et al.  Operators with singular continuous spectrum , 1995 .

[11]  Jitomirskaya,et al.  Dimensional Hausdorff properties of singular continuous spectra. , 1996, Physical review letters.

[12]  B. Simon,et al.  Operators with singular continuous spectrum: III. Almost periodic Schrödinger operators , 1994 .

[13]  B. Simon,et al.  Almost periodic Schrödinger operators , 1981 .

[14]  Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators , 1999, math-ph/9907023.

[15]  Y. Sinai,et al.  The one-dimensional Schrödinger equation with a quasiperiodic potential , 1975 .

[16]  Haifa,et al.  Almost Everything about the Almost Mathieu Operator I* , 1995 .

[17]  L. H. Eliasson,et al.  Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .

[18]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[19]  F. Martinelli,et al.  Constructive proof of localization in the Anderson tight binding model , 1985 .

[20]  Barry Simon,et al.  Subharmonicity of the Lyaponov index , 1983 .

[21]  M. Shubin Discrete Magnetic Laplacian , 1994 .

[22]  R. Lima,et al.  A metal-insulator transition for the almost Mathieu model , 1983 .

[23]  A. Klein,et al.  A new proof of localization in the Anderson tight binding model , 1989 .

[24]  S. Jitomirskaya Anderson localization for the almost Mathieu equation: A nonperturbative proof , 1994 .

[25]  Tim Purdy Anderson Localization for the Almost Mathieu Equation, III. Semi-Uniform Localization, Continuity of Gaps, and Measure of the Spectrum , 1997 .

[26]  S. Jitomirskaya,et al.  Anderson Localization for the Almost Mathieu Equation, III. Semi-Uniform Localization, Continuity of Gaps, and Measure of the Spectrum , 1998 .

[27]  B. Simon,et al.  The xi function , 1996 .

[28]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[29]  M. R. Herman Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .

[30]  B. Helffer,et al.  Semi-classical analysis for Harper's equation. III : Cantor structure of the spectrum , 1989 .

[31]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[32]  B. Simon,et al.  Duality and singular continuous spectrum in the almost Mathieu equation , 1997 .

[33]  B. Simon,et al.  Singular continuous spectrum for a class of almost periodic Jacobi matrices , 1982 .

[34]  S. Aubry The New Concept of Transitions by Breaking of Analyticity in a Crystallographic Model , 1978 .

[35]  F. Delyon Absence of localisation in the almost Mathieu equation , 1987 .

[36]  B. Simon,et al.  Almost periodic Schrödinger operators II. The integrated density of states , 1983 .

[37]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[38]  L. Eliasson Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum , 1997 .

[39]  B. Simon,et al.  On the measure of the spectrum for the almost Mathieu operator , 1991 .

[40]  F. Germinet Dynamical Localization II with an Application to the Almost Mathieu Operator , 1999 .