Quest for realistic non-singular black-hole geometries: regular-center type

[1]  G. Kunstatter,et al.  New 2D dilaton gravity for nonsingular black holes , 2015, The Fifteenth Marcel Grossmann Meeting.

[2]  V. Agostiniani,et al.  A Green's function proof of the Positive Mass Theorem , 2021, 2108.08402.

[3]  H. Maeda Hawking-Ellis type of matter on Killing horizons in symmetric spacetimes , 2021, Physical Review D.

[4]  V. Frolov,et al.  Two-dimensional black holes in the limiting curvature theory of gravity , 2021, Journal of High Energy Physics.

[5]  Y. Miao,et al.  Quasinormal modes and shadows of a new family of Ayón-Beato-García black holes , 2021, Physical Review D.

[6]  M. Visser,et al.  Inner horizon instability and the unstable cores of regular black holes , 2021, Journal of High Energy Physics.

[7]  A. Bonanno,et al.  Regular black holes with stable cores , 2020, Physical Review D.

[8]  A. Garcia-Diaz,et al.  Reply to “Comment on ‘Linear superposition of regular black hole solutions of Einstein nonlinear electrodynamics”’ , 2020, Physical Review D.

[9]  Sushant G. Ghosh,et al.  Ergosphere and shadow of a rotating regular black hole , 2020, 2006.07570.

[10]  J. Soda,et al.  Stability of magnetic black holes in general nonlinear electrodynamics , 2020, 2004.07560.

[11]  C. Charmousis,et al.  Regular black holes via the Kerr-Schild construction in DHOST theories , 2020, Journal of Cosmology and Astroparticle Physics.

[12]  B. Sapiro Scalar , 2020, Definitions.

[13]  K. Bronnikov Comment on “Linear superposition of regular black hole solutions of Einstein nonlinear electrodynamics” , 2019, Physical Review D.

[14]  H. Maeda,et al.  Energy conditions in arbitrary dimensions , 2018, Progress of Theoretical and Experimental Physics.

[15]  A. Garcia-Diaz,et al.  Linear superposition of regular black hole solutions of Einstein nonlinear electrodynamics , 2019, Physical Review D.

[16]  Aimeric Colléaux Regular black hole and cosmological spacetimes in Non-Polynomial Gravity theories , 2019 .

[17]  Tsutomu Kobayashi,et al.  Generalized 2D dilaton gravity and kinetic gravity braiding , 2019, Classical and Quantum Gravity.

[18]  Alessia Platania,et al.  Dynamical renormalization of black-hole spacetimes , 2019, The European Physical Journal C.

[19]  Maureen T. Carroll Geometry , 2017, MAlkahtani Mathematics.

[20]  Chen Wu Quasinormal frequencies of gravitational perturbation in regular black hole spacetimes , 2018 .

[21]  S. Zerbini,et al.  Nonpolynomial Lagrangian approach to regular black holes , 2017, 1712.03730.

[22]  G. Gibbons,et al.  Zero mass limit of Kerr spacetime is a wormhole , 2017, 1705.07787.

[23]  M. Rodrigues,et al.  Using dominant and weak energy conditions for build new classe of regular black holes , 2017, 1705.05744.

[24]  S. Zerbini,et al.  A note on singular and non-singular black holes , 2017, 1704.08516.

[25]  B. Ahmedov,et al.  Generic rotating regular black holes in general relativity coupled to nonlinear electrodynamics , 2017, 1704.07300.

[26]  A. Chamseddine,et al.  Nonsingular black hole , 2016, 1612.05861.

[27]  F. Fayos,et al.  On regular rotating black holes , 2016, General Relativity and Gravitation.

[28]  Xiaobao Wang,et al.  Construction of Regular Black Holes in General Relativity , 2016, 1610.02636.

[29]  V. Frolov Notes on nonsingular models of black holes , 2016, 1609.01758.

[30]  Sushant G. Ghosh,et al.  Shapes of rotating nonsingular black hole shadows , 2016, 1603.06382.

[31]  P. Avelino Mass inflation in Eddington-inspired Born-Infeld black holes: analytical scaling solutions , 2016, 1602.08261.

[32]  P. Avelino Inner Structure of Black Holes in Eddington-inspired Born-Infeld gravity: the role of mass inflation , 2015, 1511.03223.

[33]  S. Kuester Geometry Of Spacetime An Introduction To Special And General Relativity , 2016 .

[34]  Sushant G. Ghosh A nonsingular rotating black hole , 2014, 1408.5668.

[35]  E. Vagenas,et al.  Regular black holes with a nonlinear electrodynamics source , 2014, 1408.0306.

[36]  M. Azreg-Ainou Generating rotating regular black hole solutions without complexification , 2014, 1405.2569.

[37]  A. Abdujabbarov,et al.  Rotating Regular Black Hole Solution , 2014, 1404.6443.

[38]  G. E. Romero,et al.  An Analysis of a Regular Black Hole Interior Model , 2014 .

[39]  A. Saa,et al.  Regular rotating black holes and the weak energy condition , 2014, 1402.2694.

[40]  M. Azreg-Ainou From static to rotating to conformal static solutions: Rotating imperfect fluid wormholes with(out) electric or magnetic field , 2014, 1401.4292.

[41]  E. Vagenas,et al.  Regular black hole metrics and the weak energy condition , 2014, 1401.2136.

[42]  M. Azreg-Ainou Regular and conformal regular cores for static and rotating solutions , 2014, 1401.0787.

[43]  C. Bambi,et al.  Rotating regular black holes , 2013, 1302.6075.

[44]  J. Lemos,et al.  Regular black holes: Electrically charged solutions, Reissner-Nordstr\'om outside a de Sitter core , 2011, 1104.4790.

[45]  H. Maeda,et al.  Magnetic black holes with higher-order curvature and gauge corrections in even dimensions , 2010, 1006.3604.

[46]  O. Zaslavskii Regular black holes and energy conditions , 2010, 1004.2362.

[47]  E. Spallucci,et al.  Kerrr black hole: The lord of the string , 2010, 1003.3918.

[48]  A. Hamilton,et al.  Mass Inflation in Brans-Dicke gravity , 2009, 0904.2669.

[49]  M. Visser Black holes in general relativity , 2009, 0901.4365.

[50]  P. Brady Gravitational Collapse and Spacetime Singularities A. Einstein Equations in Spherical Symmetry , 2022 .

[51]  S. Ansoldi Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources , 2008, 0802.0330.

[52]  H. Maeda,et al.  Generalized Misner-Sharp quasi-local mass in Einstein-Gauss-Bonnet gravity , 2007, 0709.1199.

[53]  J. Podolský,et al.  Robinson–Trautman spacetimes with an electromagnetic field in higher dimensions , 2007, 0708.4299.

[54]  K. Nozari,et al.  Noncommutative Geometry Inspired Charged Black Holes in Extra Dimensions , 2007 .

[55]  M. Visser The Kerr spacetime: A brief introduction , 2007, 0706.0622.

[56]  A. Casher,et al.  On Black Hole Remnants , 2007, 0705.0444.

[57]  S. Ansoldi,et al.  Non-commutative geometry inspired charged black holes , 2006, gr-qc/0612035.

[58]  S. Hsu,et al.  The null energy condition and instability , 2006, hep-th/0606091.

[59]  P. Nicolini,et al.  Noncommutative geometry inspired Schwarzschild black hole , 2005, gr-qc/0510112.

[60]  S. Hsu,et al.  Instabilities and the null energy condition , 2005, hep-th/0502203.

[61]  S. Hayward FORMATION AND EVAPORATION OF REGULAR BLACK HOLES , 2005 .

[62]  D. Kazanas,et al.  Nonsingular black hole model as a possible end product of gravitational collapse , 2005, gr-qc/0506111.

[63]  H. Maeda,et al.  Spacetime structure of static solutions in Gauss-Bonnet gravity: Neutral case , 2005, hep-th/0504127.

[64]  I. Dymnikova Regular electrically charged vacuum structures with de Sitter centre in nonlinear electrodynamics coupled to general relativity , 2004, gr-qc/0407072.

[65]  Alberto A. Garćıa,et al.  Four-parametric regular black hole solution , 2004, hep-th/0403229.

[66]  Mikio Nakahara,et al.  Geometry, Topology and Physics, Second Edition , 2003 .

[67]  I. Dymnikova Spherically symmetric space-time with the regular de Sitter center , 2003, gr-qc/0304110.

[68]  O. Sarbach,et al.  Stability properties of black holes in self-gravitating nonlinear electrodynamics , 2002, gr-qc/0208090.

[69]  I. Dymnikova The cosmological term as a source of mass , 2001, gr-qc/0112052.

[70]  A. DeBenedictis,et al.  Spherical Gravitating Systems of Arbitrary Dimension , 2001, gr-qc/0110083.

[71]  E. Elizalde,et al.  Regular Sources of the Kerr-Schild class for Rotating and Nonrotating Black Hole Solutions , 2001, gr-qc/0109085.

[72]  J. Faraut,et al.  Self-adjoint extensions of operators and the teaching of quantum mechanics , 2001, quant-ph/0103153.

[73]  K. Bronnikov Regular magnetic black holes and monopoles from nonlinear electrodynamics , 2000, gr-qc/0006014.

[74]  E. Ay'on-Beato,et al.  The Bardeen model as a nonlinear magnetic monopole , 2000, gr-qc/0009077.

[75]  P. Szekeres,et al.  Uniqueness of the Newman–Janis Algorithm in Generating the Kerr–Newman Metric , 2000 .

[76]  I. Dymnikova The algebraic structure of a cosmological term in spherically symmetric solutions , 1999, gr-qc/9912116.

[77]  C. Doran New form of the Kerr solution , 1999, gr-qc/9910099.

[78]  James J. Callahan,et al.  The geometry of spacetime , 2000 .

[79]  E. Ay'on-Beato,et al.  New regular black hole solution from nonlinear electrodynamics , 1999, hep-th/9911174.

[80]  E. Ay'on-Beato,et al.  Regular black hole in general relativity coupled to nonlinear electrodynamics , 1998, gr-qc/9911046.

[81]  M. Mars,et al.  LETTER TO THE EDITOR: Models of regular Schwarzschild black holes satisfying weak energy conditions , 1996 .

[82]  F. Wilczek,et al.  Internal Structure of Black Holes , 1995, hep-th/9511064.

[83]  K. Bronnikov,et al.  The Birkhoff theorem in multidimensional gravity , 1995 .

[84]  C. Clarke,et al.  The Analysis of Space-Time Singularities , 1994 .

[85]  M. Trodden,et al.  A nonsingular two dimensional black hole , 1993, hep-th/9305111.

[86]  I. Dymnikova Vacuum nonsingular black hole , 1992 .

[87]  Morgan Black holes in cutoff gravity. , 1991, Physical review. D, Particles and fields.

[88]  J. Polchinski Decoupling versus excluded volume or return of the giant wormholes , 1989 .

[89]  Israel,et al.  Inner-horizon instability and mass inflation in black holes. , 1989, Physical review letters.

[90]  W. Israel,et al.  Structure of the black hole nucleus , 1988 .

[91]  J. Plebański,et al.  Duality rotations and type D solutions to Einstein equations with nonlinear electromagnetic sources , 1987 .

[92]  M. Markov Problems of a perpetually oscillating universe , 1984 .

[93]  Stephen W. Hawking,et al.  Positive mass theorems for black holes , 1983 .

[94]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[95]  M. Markov Limiting density of matter as a universal law of nature , 1982 .

[96]  J. M. Nester A NEW GRAVITATIONAL ENERGY EXPRESSION WITH A SIMPLE POSITIVITY PROOF , 1981 .

[97]  K. Bronnikov,et al.  Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions , 1979 .

[98]  Shing-Tung Yau,et al.  On the proof of the positive mass conjecture in general relativity , 1979 .

[99]  F. Gürsey,et al.  Lorentz covariant treatment of the Kerr--Schild geometry , 1975 .

[100]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[101]  R. Penrose,et al.  The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[102]  E. Newman,et al.  Metric of a Rotating, Charged Mass , 1965 .

[103]  E. Newman,et al.  Note on the Kerr Spinning‐Particle Metric , 1965 .