Quest for realistic non-singular black-hole geometries: regular-center type
暂无分享,去创建一个
[1] G. Kunstatter,et al. New 2D dilaton gravity for nonsingular black holes , 2015, The Fifteenth Marcel Grossmann Meeting.
[2] V. Agostiniani,et al. A Green's function proof of the Positive Mass Theorem , 2021, 2108.08402.
[3] H. Maeda. Hawking-Ellis type of matter on Killing horizons in symmetric spacetimes , 2021, Physical Review D.
[4] V. Frolov,et al. Two-dimensional black holes in the limiting curvature theory of gravity , 2021, Journal of High Energy Physics.
[5] Y. Miao,et al. Quasinormal modes and shadows of a new family of Ayón-Beato-García black holes , 2021, Physical Review D.
[6] M. Visser,et al. Inner horizon instability and the unstable cores of regular black holes , 2021, Journal of High Energy Physics.
[7] A. Bonanno,et al. Regular black holes with stable cores , 2020, Physical Review D.
[8] A. Garcia-Diaz,et al. Reply to “Comment on ‘Linear superposition of regular black hole solutions of Einstein nonlinear electrodynamics”’ , 2020, Physical Review D.
[9] Sushant G. Ghosh,et al. Ergosphere and shadow of a rotating regular black hole , 2020, 2006.07570.
[10] J. Soda,et al. Stability of magnetic black holes in general nonlinear electrodynamics , 2020, 2004.07560.
[11] C. Charmousis,et al. Regular black holes via the Kerr-Schild construction in DHOST theories , 2020, Journal of Cosmology and Astroparticle Physics.
[12] B. Sapiro. Scalar , 2020, Definitions.
[13] K. Bronnikov. Comment on “Linear superposition of regular black hole solutions of Einstein nonlinear electrodynamics” , 2019, Physical Review D.
[14] H. Maeda,et al. Energy conditions in arbitrary dimensions , 2018, Progress of Theoretical and Experimental Physics.
[15] A. Garcia-Diaz,et al. Linear superposition of regular black hole solutions of Einstein nonlinear electrodynamics , 2019, Physical Review D.
[16] Aimeric Colléaux. Regular black hole and cosmological spacetimes in Non-Polynomial Gravity theories , 2019 .
[17] Tsutomu Kobayashi,et al. Generalized 2D dilaton gravity and kinetic gravity braiding , 2019, Classical and Quantum Gravity.
[18] Alessia Platania,et al. Dynamical renormalization of black-hole spacetimes , 2019, The European Physical Journal C.
[19] Maureen T. Carroll. Geometry , 2017, MAlkahtani Mathematics.
[20] Chen Wu. Quasinormal frequencies of gravitational perturbation in regular black hole spacetimes , 2018 .
[21] S. Zerbini,et al. Nonpolynomial Lagrangian approach to regular black holes , 2017, 1712.03730.
[22] G. Gibbons,et al. Zero mass limit of Kerr spacetime is a wormhole , 2017, 1705.07787.
[23] M. Rodrigues,et al. Using dominant and weak energy conditions for build new classe of regular black holes , 2017, 1705.05744.
[24] S. Zerbini,et al. A note on singular and non-singular black holes , 2017, 1704.08516.
[25] B. Ahmedov,et al. Generic rotating regular black holes in general relativity coupled to nonlinear electrodynamics , 2017, 1704.07300.
[26] A. Chamseddine,et al. Nonsingular black hole , 2016, 1612.05861.
[27] F. Fayos,et al. On regular rotating black holes , 2016, General Relativity and Gravitation.
[28] Xiaobao Wang,et al. Construction of Regular Black Holes in General Relativity , 2016, 1610.02636.
[29] V. Frolov. Notes on nonsingular models of black holes , 2016, 1609.01758.
[30] Sushant G. Ghosh,et al. Shapes of rotating nonsingular black hole shadows , 2016, 1603.06382.
[31] P. Avelino. Mass inflation in Eddington-inspired Born-Infeld black holes: analytical scaling solutions , 2016, 1602.08261.
[32] P. Avelino. Inner Structure of Black Holes in Eddington-inspired Born-Infeld gravity: the role of mass inflation , 2015, 1511.03223.
[33] S. Kuester. Geometry Of Spacetime An Introduction To Special And General Relativity , 2016 .
[34] Sushant G. Ghosh. A nonsingular rotating black hole , 2014, 1408.5668.
[35] E. Vagenas,et al. Regular black holes with a nonlinear electrodynamics source , 2014, 1408.0306.
[36] M. Azreg-Ainou. Generating rotating regular black hole solutions without complexification , 2014, 1405.2569.
[37] A. Abdujabbarov,et al. Rotating Regular Black Hole Solution , 2014, 1404.6443.
[38] G. E. Romero,et al. An Analysis of a Regular Black Hole Interior Model , 2014 .
[39] A. Saa,et al. Regular rotating black holes and the weak energy condition , 2014, 1402.2694.
[40] M. Azreg-Ainou. From static to rotating to conformal static solutions: Rotating imperfect fluid wormholes with(out) electric or magnetic field , 2014, 1401.4292.
[41] E. Vagenas,et al. Regular black hole metrics and the weak energy condition , 2014, 1401.2136.
[42] M. Azreg-Ainou. Regular and conformal regular cores for static and rotating solutions , 2014, 1401.0787.
[43] C. Bambi,et al. Rotating regular black holes , 2013, 1302.6075.
[44] J. Lemos,et al. Regular black holes: Electrically charged solutions, Reissner-Nordstr\'om outside a de Sitter core , 2011, 1104.4790.
[45] H. Maeda,et al. Magnetic black holes with higher-order curvature and gauge corrections in even dimensions , 2010, 1006.3604.
[46] O. Zaslavskii. Regular black holes and energy conditions , 2010, 1004.2362.
[47] E. Spallucci,et al. Kerrr black hole: The lord of the string , 2010, 1003.3918.
[48] A. Hamilton,et al. Mass Inflation in Brans-Dicke gravity , 2009, 0904.2669.
[49] M. Visser. Black holes in general relativity , 2009, 0901.4365.
[50] P. Brady. Gravitational Collapse and Spacetime Singularities A. Einstein Equations in Spherical Symmetry , 2022 .
[51] S. Ansoldi. Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources , 2008, 0802.0330.
[52] H. Maeda,et al. Generalized Misner-Sharp quasi-local mass in Einstein-Gauss-Bonnet gravity , 2007, 0709.1199.
[53] J. Podolský,et al. Robinson–Trautman spacetimes with an electromagnetic field in higher dimensions , 2007, 0708.4299.
[54] K. Nozari,et al. Noncommutative Geometry Inspired Charged Black Holes in Extra Dimensions , 2007 .
[55] M. Visser. The Kerr spacetime: A brief introduction , 2007, 0706.0622.
[56] A. Casher,et al. On Black Hole Remnants , 2007, 0705.0444.
[57] S. Ansoldi,et al. Non-commutative geometry inspired charged black holes , 2006, gr-qc/0612035.
[58] S. Hsu,et al. The null energy condition and instability , 2006, hep-th/0606091.
[59] P. Nicolini,et al. Noncommutative geometry inspired Schwarzschild black hole , 2005, gr-qc/0510112.
[60] S. Hsu,et al. Instabilities and the null energy condition , 2005, hep-th/0502203.
[61] S. Hayward. FORMATION AND EVAPORATION OF REGULAR BLACK HOLES , 2005 .
[62] D. Kazanas,et al. Nonsingular black hole model as a possible end product of gravitational collapse , 2005, gr-qc/0506111.
[63] H. Maeda,et al. Spacetime structure of static solutions in Gauss-Bonnet gravity: Neutral case , 2005, hep-th/0504127.
[64] I. Dymnikova. Regular electrically charged vacuum structures with de Sitter centre in nonlinear electrodynamics coupled to general relativity , 2004, gr-qc/0407072.
[65] Alberto A. Garćıa,et al. Four-parametric regular black hole solution , 2004, hep-th/0403229.
[66] Mikio Nakahara,et al. Geometry, Topology and Physics, Second Edition , 2003 .
[67] I. Dymnikova. Spherically symmetric space-time with the regular de Sitter center , 2003, gr-qc/0304110.
[68] O. Sarbach,et al. Stability properties of black holes in self-gravitating nonlinear electrodynamics , 2002, gr-qc/0208090.
[69] I. Dymnikova. The cosmological term as a source of mass , 2001, gr-qc/0112052.
[70] A. DeBenedictis,et al. Spherical Gravitating Systems of Arbitrary Dimension , 2001, gr-qc/0110083.
[71] E. Elizalde,et al. Regular Sources of the Kerr-Schild class for Rotating and Nonrotating Black Hole Solutions , 2001, gr-qc/0109085.
[72] J. Faraut,et al. Self-adjoint extensions of operators and the teaching of quantum mechanics , 2001, quant-ph/0103153.
[73] K. Bronnikov. Regular magnetic black holes and monopoles from nonlinear electrodynamics , 2000, gr-qc/0006014.
[74] E. Ay'on-Beato,et al. The Bardeen model as a nonlinear magnetic monopole , 2000, gr-qc/0009077.
[75] P. Szekeres,et al. Uniqueness of the Newman–Janis Algorithm in Generating the Kerr–Newman Metric , 2000 .
[76] I. Dymnikova. The algebraic structure of a cosmological term in spherically symmetric solutions , 1999, gr-qc/9912116.
[77] C. Doran. New form of the Kerr solution , 1999, gr-qc/9910099.
[78] James J. Callahan,et al. The geometry of spacetime , 2000 .
[79] E. Ay'on-Beato,et al. New regular black hole solution from nonlinear electrodynamics , 1999, hep-th/9911174.
[80] E. Ay'on-Beato,et al. Regular black hole in general relativity coupled to nonlinear electrodynamics , 1998, gr-qc/9911046.
[81] M. Mars,et al. LETTER TO THE EDITOR: Models of regular Schwarzschild black holes satisfying weak energy conditions , 1996 .
[82] F. Wilczek,et al. Internal Structure of Black Holes , 1995, hep-th/9511064.
[83] K. Bronnikov,et al. The Birkhoff theorem in multidimensional gravity , 1995 .
[84] C. Clarke,et al. The Analysis of Space-Time Singularities , 1994 .
[85] M. Trodden,et al. A nonsingular two dimensional black hole , 1993, hep-th/9305111.
[86] I. Dymnikova. Vacuum nonsingular black hole , 1992 .
[87] Morgan. Black holes in cutoff gravity. , 1991, Physical review. D, Particles and fields.
[88] J. Polchinski. Decoupling versus excluded volume or return of the giant wormholes , 1989 .
[89] Israel,et al. Inner-horizon instability and mass inflation in black holes. , 1989, Physical review letters.
[90] W. Israel,et al. Structure of the black hole nucleus , 1988 .
[91] J. Plebański,et al. Duality rotations and type D solutions to Einstein equations with nonlinear electromagnetic sources , 1987 .
[92] M. Markov. Problems of a perpetually oscillating universe , 1984 .
[93] Stephen W. Hawking,et al. Positive mass theorems for black holes , 1983 .
[94] Subrahmanyan Chandrasekhar,et al. The Mathematical Theory of Black Holes , 1983 .
[95] M. Markov. Limiting density of matter as a universal law of nature , 1982 .
[96] J. M. Nester. A NEW GRAVITATIONAL ENERGY EXPRESSION WITH A SIMPLE POSITIVITY PROOF , 1981 .
[97] K. Bronnikov,et al. Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions , 1979 .
[98] Shing-Tung Yau,et al. On the proof of the positive mass conjecture in general relativity , 1979 .
[99] F. Gürsey,et al. Lorentz covariant treatment of the Kerr--Schild geometry , 1975 .
[100] George F. R. Ellis,et al. The Large Scale Structure of Space-Time , 2023 .
[101] R. Penrose,et al. The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[102] E. Newman,et al. Metric of a Rotating, Charged Mass , 1965 .
[103] E. Newman,et al. Note on the Kerr Spinning‐Particle Metric , 1965 .