Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments

Abstract Molecular extended thermodynamics of rarefied polyatomic gases is characterized by two hierarchies of equations for moments of a suitable distribution function in which the internal degrees of freedom of a molecule is taken into account. On the basis of physical relevance the truncation orders of the two hierarchies are proven to be not independent on each other, and the closure procedures based on the maximum entropy principle (MEP) and on the entropy principle (EP) are proven to be equivalent. The characteristic velocities of the emerging hyperbolic system of differential equations are compared to those obtained for monatomic gases and the lower bound estimate for the maximum equilibrium characteristic velocity established for monatomic gases (characterized by only one hierarchy for moments with truncation order of moments N ) by Boillat and Ruggeri (1997) λ ( N ) E , max c 0 ⩾ 6 5 ( N − 1 2 ) , ( c 0 = 5 3 k m T ) is proven to hold also for rarefied polyatomic gases independently from the degrees of freedom of a molecule.

[1]  T. Ruggeri,et al.  Galilean invariance and entropy principle for systems of balance laws , 1989 .

[2]  G. M. Kremer Extended thermodynamics of non-ideal gases , 1987 .

[3]  W. Dreyer,et al.  Maximisation of the entropy in non-equilibrium , 1987 .

[4]  J. N. Kapur Maximum-entropy models in science and engineering , 1992 .

[5]  J. Meixner,et al.  Absorption und Dispersion des Schalles in Gasen mit chemisch reagierenden und anregbaren Komponenten. I. Teil , 1943 .

[6]  Tommaso Ruggeri,et al.  Entropy principle for the moment systems of degree $\alpha$ associated to the Boltzmann equation. Critical derivatives and non controllable boundary data , 2002 .

[7]  T. Ruggeri Can constitutive relations be represented by non-local equations? , 2012 .

[8]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[9]  Pierre Degond,et al.  Quantum Moment Hydrodynamics and the Entropy Principle , 2003 .

[10]  G. M. Kremer Extended thermodynamics of molecular ideal gases , 1989 .

[11]  Tommaso Ruggeri,et al.  Dispersion relation in the high frequency limit and non linear wave stability for hyperbolic dissipative systems , 1992 .

[12]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[13]  P. Le Tallec,et al.  Microreversible collisions for polyatomic gases and Boltzmann's theorem , 1994 .

[14]  Liu I-Shih Extended thermodynamics of fluids and virial equations of state , 1985 .

[15]  G. M. Kremer,et al.  An Introduction to the Boltzmann Equation and Transport Processes in Gases , 2010 .

[16]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[17]  Claus Borgnakke,et al.  Statistical collision model for Monte Carlo simulation of polyatomic gas mixture , 1975 .

[18]  Tommaso Ruggeri,et al.  On the shock structure problem for hyperbolic system of balance laws and convex entropy , 1998 .

[19]  François Mallinger Generalization of the Grad Theory to Polyatomic Gases , 1998 .

[20]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[21]  Michael Junk,et al.  Domain of Definition of Levermore's Five-Moment System , 1998 .

[22]  T. Ruggeri,et al.  On the six-field model of fluids based on extended thermodynamics , 2014 .

[23]  I-Shih Liu,et al.  Relativistic thermodynamics of gases , 1986 .

[24]  Tommaso Ruggeri,et al.  Relativistic gas: Moment equations and maximum wave velocity , 1999 .

[25]  Silviu Guiasu,et al.  The principle of maximum entropy , 1985 .

[26]  I. Muller,et al.  Zum Paradoxon der Warmeleitungstheorie , 1967 .

[27]  Francesco Salvarani,et al.  A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions , 2005 .

[28]  Marshall Slemrod,et al.  From Boltzmann to Euler: Hilbert's 6th problem revisited , 2013, Comput. Math. Appl..

[29]  T. Ruggeri,et al.  Extended thermodynamics of dense gases , 2012 .

[30]  Takashi Arima,et al.  Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics , 2013 .

[31]  Tommaso Ruggeri,et al.  Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics , 1981 .

[32]  Maximum entropy principle for rarefied polyatomic gases , 2013 .

[33]  Takashi Arima,et al.  Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Tommaso Ruggeri,et al.  Maximum wave velocity in the moments system of a relativistic gas , 1999 .

[35]  Ingo Müller,et al.  Thermodynamics of irreversible processes — past and present , 2012, The European Physical Journal H.

[36]  T. Ruggeri Symmetric-hyperbolic system of conservative equations for a viscous heat conducting fluid , 1983 .

[37]  I-Shih Liu,et al.  Extended thermodynamics of classical and degenerate ideal gases , 1983 .

[38]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[39]  Takashi Arima,et al.  Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics , 2013 .

[40]  Tommaso Ruggeri,et al.  Hyperbolic Principal Subsystems: Entropy Convexity and Subcharacteristic Conditions , 1997 .

[41]  Takashi Arima,et al.  Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas , 2014 .

[42]  Takashi Arima,et al.  Extended thermodynamics of real gases with dynamic pressure: An extension of Meixnerʼs theory , 2012 .

[43]  T. Ruggeri,et al.  On the evolution law of weak discontinuities for hyperbolic quasi-linear systems , 1979 .

[44]  Tommaso Ruggeri,et al.  Moment equations in the kinetic theory of gases and wave velocities , 1997 .

[45]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[46]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[47]  Vanishing Shear Viscosity in a Free-Boundary Problem for the Equations of Compressible Fluids , 2000 .

[48]  Mikhail Naumovich Kogan,et al.  Rarefied Gas Dynamics , 1969 .