Reference priors when the stopping rule depends on the parameter of interest
暂无分享,去创建一个
[1] Z. Govindarajulu. The sequential statistical analysis of hypothesis testing, point and interval estimation, and decision theory , 1987 .
[2] R. Tibshirani. Noninformative priors for one parameter of many , 1989 .
[3] James O. Berger,et al. Ordered group reference priors with application to the multinomial problem , 1992 .
[4] James O. Berger,et al. Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .
[5] James O. Berger,et al. Noninformative priors for inferences in exponential regression models , 1991 .
[6] B. L. Welch,et al. On Formulae for Confidence Points Based on Integrals of Weighted Likelihoods , 1963 .
[7] Charles Stein,et al. On the coverage probability of confidence sets based on a prior distribution , 1985 .
[8] J. Q. Smith,et al. 1. Bayesian Statistics 4 , 1993 .
[9] B. Efron. [Why Isn't Everyone a Bayesian?]: Reply , 1986 .
[10] J. Bernardo. Reference Posterior Distributions for Bayesian Inference , 1979 .
[11] A. M. Walker. On the Asymptotic Behaviour of Posterior Distributions , 1969 .
[12] James O. Berger,et al. Reference Priors in a Variance Components Problem , 1992 .
[13] H. Akaike. A new look at the Bayes procedure , 1978 .
[14] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[15] D. Bartholomew,et al. A comparison of some Bayesian and frequentist inferences. II. , 1965, Biometrika.
[16] B. Efron. Why Isn't Everyone a Bayesian? , 1986 .
[17] James O. Berger,et al. The Relevance of Stopping Rules in Statistical Inference , 1988 .
[18] Melvin R. Novick,et al. A Bayesian Indifference Procedure , 1965 .