Isotropic conforming refinement of quadrilateral and hexahedral meshes using two‐refinement templates

[1]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[2]  H. L. de Cougny,et al.  Refinement and coarsening of surface meshes , 1998, Engineering with Computers.

[3]  Guoqun Zhao,et al.  Adaptive hexahedral mesh generation based on local domain curvature and thickness using a modified grid-based method , 2007 .

[4]  Kazuhiro Nakahashi,et al.  Surface triangulation for polygonal models based on CAD data , 2002 .

[5]  Dimitri J. Mavriplis,et al.  Accurate Multigrid Solution of the Euler Equations on Unstructured and Adaptive Meshes , 1988 .

[6]  Ko-Foa Tchon,et al.  Automated refinement of conformal quadrilateral and hexahedral meshes , 2004 .

[7]  R. Löhner Regridding Surface Triangulations , 1996 .

[8]  Robert Schneiders,et al.  Octree-Based Hexahedral Mesh Generation , 2000, Int. J. Comput. Geom. Appl..

[9]  Yongjie Zhang,et al.  Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data. , 2006, Computer methods in applied mechanics and engineering.

[10]  Kenji Shimada,et al.  HEXHOOP: Modular Templates for Converting a Hex-Dominant Mesh to an ALL-Hex Mesh , 2002, Engineering with Computers.

[11]  Yasushi Ito,et al.  Octree‐based reasonable‐quality hexahedral mesh generation using a new set of refinement templates , 2009 .

[12]  Nigel P. Weatherill,et al.  Enhanced remeshing from STL files with applications to surface grid generation , 2006 .

[13]  Pascal Frey Generation and adaptation of computational surface meshes from discrete anatomical data , 2004 .

[14]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .