Learning Spectral Clustering, With Application To Speech Separation

Spectral clustering refers to a class of techniques which rely on the eigenstructure of a similarity matrix to partition points into disjoint clusters, with points in the same cluster having high similarity and points in different clusters having low similarity. In this paper, we derive new cost functions for spectral clustering based on measures of error between a given partition and a solution of the spectral relaxation of a minimum normalized cut problem. Minimizing these cost functions with respect to the partition leads to new spectral clustering algorithms. Minimizing with respect to the similarity matrix leads to algorithms for learning the similarity matrix from fully labelled data sets. We apply our learning algorithm to the blind one-microphone speech separation problem, casting the problem as one of segmentation of the spectrogram.

[1]  Jianbo Shi,et al.  Learning Segmentation by Random Walks , 2000, NIPS.

[2]  C. Ding,et al.  Spectral relaxation models and structure analysis for K-way graph clustering and bi-clustering , 2001 .

[3]  Daniel P. W. Ellis,et al.  The auditory organization of speech and other sources in listeners and computational models , 2001, Speech Commun..

[4]  Özgür Yilmaz,et al.  Blind separation of disjoint orthogonal signals: demixing N sources from 2 mixtures , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[5]  Lihao Xu,et al.  Multiway cuts and spec-tral clustering , 2003 .

[6]  D. Howard,et al.  Speech and audio signal processing: processing and perception of speech and music [Book Review] , 2000 .

[7]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[8]  Ulrike von Luxburg,et al.  Limits of Spectral Clustering , 2004, NIPS.

[9]  Chris H. Q. Ding,et al.  Spectral Relaxation for K-means Clustering , 2001, NIPS.

[10]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[11]  Andrew W. Moore,et al.  'N-Body' Problems in Statistical Learning , 2000, NIPS.

[12]  Chris H. Q. Ding,et al.  On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering , 2005, SDM.

[13]  Naftali Tishby,et al.  Data Clustering by Markovian Relaxation and the Information Bottleneck Method , 2000, NIPS.

[14]  Jitendra Malik,et al.  Efficient spatiotemporal grouping using the Nystrom method , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[15]  Q. Summerfield Book Review: Auditory Scene Analysis: The Perceptual Organization of Sound , 1992 .

[16]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[17]  Jianbo Shi,et al.  Learning spectral graph segmentation , 2005, AISTATS.

[18]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Tommi S. Jaakkola,et al.  Partially labeled classification with Markov random walks , 2001, NIPS.

[20]  Michael I. Jordan,et al.  Discriminative training of hidden Markov models for multiple pitch tracking [speech processing examples] , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[21]  Tomer Hertz,et al.  Learning Distance Functions using Equivalence Relations , 2003, ICML.

[22]  Guy L. Scott,et al.  Feature grouping by 'relocalisation' of eigenvectors of the proximity matrix , 1990, BMVC.

[23]  Nello Cristianini,et al.  Spectral Kernel Methods for Clustering , 2001, NIPS.

[24]  Marina Meila,et al.  An Experimental Comparison of Model-Based Clustering Methods , 2004, Machine Learning.

[25]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[26]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .

[27]  Tomer Hertz,et al.  Learning and inferring image segmentations using the GBP typical cut algorithm , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[28]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[29]  Guy J. Brown,et al.  Computational auditory scene analysis , 1994, Comput. Speech Lang..

[30]  G. Wahba Spline models for observational data , 1990 .

[31]  Marina Meila,et al.  An Experimental Comparison of Several Clustering and Initialization Methods , 1998, UAI.

[32]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[33]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[34]  S. Mallat A wavelet tour of signal processing , 1998 .

[35]  Te-Won Lee,et al.  A Maximum Likelihood Approach to Single-channel Source Separation , 2003, J. Mach. Learn. Res..

[36]  D. Higham,et al.  A Unified View of Spectral Clustering ∗ , 2004 .

[37]  Gene H. Golub,et al.  Matrix computations , 1983 .

[38]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[39]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[40]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[41]  Barak A. Pearlmutter,et al.  Blind Source Separation via Multinode Sparse Representation , 2001, NIPS.

[42]  Sam T. Roweis,et al.  One Microphone Source Separation , 2000, NIPS.

[43]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[44]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[45]  Eytan Domany,et al.  Data Clustering Using a Model Granular Magnet , 1997, Neural Computation.

[46]  I. Dhillon,et al.  A Unified View of Kernel k-means , Spectral Clustering and Graph Cuts , 2004 .

[47]  Jae S. Lim,et al.  Signal estimation from modified short-time Fourier transform , 1983, ICASSP.

[48]  Brendan J. Frey,et al.  Probabilistic Inference of Speech Signals from Phaseless Spectrograms , 2003, NIPS.

[49]  Michael L. Overton,et al.  Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..

[50]  Jianbo Shi,et al.  Grouping with Bias , 2001, NIPS.