FUNDAMENTAL ASPECTS OF NANO-REINFORCED COMPOSITES

Abstract The present paper highlights the potential of the CNTs as nanofillers in polymers, but also stresses out the limitations and challenges one has to face dealing with nanoparticles in general. The relation between particle size, separation and volume content is described analytically. The dominating effect of manufacturing route (sonication, mech. stirring and calendering) and surface properties of carbon nanotubes (CNTs), influencing the resulting degree of dispersion and interfacial adhesion, were intensively investigated by transmission electron microscopy (TEM). The resulting (fracture) mechanical properties of the CNT/epoxy composites were investigated for volume contents below 1%. The fracture toughness K Ic turned out to be significantly increased (45%) adding only 0.3% of amino-functionalised double-walled carbon nanotubes (DWCNT-NH 2 ).

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[3]  K. Schulte,et al.  Carbon Nanotube-Reinforced Polymers: a State of the Art Review , 2005 .

[4]  R. D. Bradshaw,et al.  Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor , 2003, Composites Science and Technology.

[5]  G. Ondracek Microstructure-thermomechanical-property correlations of two-phase and porous materials , 1986 .

[6]  Robert J. Young,et al.  Crack propagation in a glass particle-filled epoxy resin , 1984 .

[7]  A. Kinloch,et al.  The fracture of hybrid-particulate composites , 1985 .

[8]  Karl Schulte,et al.  Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites , 2003 .

[9]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[10]  H. Kausch,et al.  Parameters determining the strength and toughness of particulate filled epoxide resins , 1987 .

[11]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[12]  Anthony G. Evans,et al.  The strength of brittle materials containing second phase dispersions , 1972 .

[13]  Malcolm L. H. Green,et al.  Mechanical damage of carbon nanotubes by ultrasound , 1996 .

[14]  Milo S. P. Shaffer,et al.  Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties , 1999 .

[15]  R. Young,et al.  Crack propagation in a glass particle-filled epoxy resin , 1984 .

[16]  A. P. Davey,et al.  Observation of site selective binding in a polymer nanotube composite , 2000 .

[17]  Alan H. Windle,et al.  Nematic Liquid Crystallinity of Multiwall Carbon Nanotubes , 2003, Science.

[18]  A. Rousset,et al.  Specific surface area of carbon nanotubes and bundles of carbon nanotubes , 2001 .

[19]  Yoshinobu Nakamura,et al.  Fracture toughness of spherical silica-filled epoxy adhesives , 2001 .

[20]  Robert J. Young,et al.  Crack propagation in a glass particle-filled epoxy resin , 1984 .

[21]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[22]  Milo S. P. Shaffer,et al.  Dispersion and packing of carbon nanotubes , 1998 .

[23]  F. F. Lange,et al.  The interaction of a crack front with a second-phase dispersion , 1970 .

[24]  R. E. Robertson,et al.  Rigid-particle toughening of glassy polymers , 2003 .

[25]  Sidney R. Cohen,et al.  Detachment of nanotubes from a polymer matrix , 2002 .

[26]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[27]  Tsu-Wei Chou,et al.  Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces , 2003 .

[28]  Karen Lozano,et al.  Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes , 2004 .

[29]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[30]  Frank T. Fisher,et al.  Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties , 2003 .

[31]  Michael Griebel,et al.  Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces , 2002 .

[32]  T. Chou,et al.  On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .

[33]  S. Bandyopadhyay Review of the microscopic and macroscopic aspects of fracture of unmodified and modified epoxy resins , 1990 .

[34]  Jiang Zhu,et al.  Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization , 2003 .

[35]  J. Embury,et al.  Fracture of a brittle particulate composite , 1979 .

[36]  W. Cantwell,et al.  Parameters determining the strength and toughness of particulate-filled epoxy resins , 1987 .

[37]  J. Embury,et al.  Fracture of a brittle particulate composite , 1979 .

[38]  Karl Schulte,et al.  Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites , 2004 .

[39]  Daniel J. Klingenberg,et al.  Flocculation in simulations of sheared fiber suspensions , 2004 .

[40]  Schmid,et al.  Mechanical flocculation in flowing fiber suspensions , 2000, Physical review letters.

[41]  J Tonndorf,et al.  Cochlear prostheses. A state-of-the-art review. , 1977, The Annals of otology, rhinology & laryngology. Supplement.