Statistical thermodynamics in the classical molecular dynamics ensemble. III. Numerical results

The statistical thermodynamics of the classical molecular dynamics ensemble [J. Chem. Phys. 100, 3048 (1994); 100, 3060 (1994)] is used in preliminary simulations of systems composed of spherical, linear, and octahedral model molecules. The predicted behavior of general energy and volume derivatives of the classical phase space integrals are shown to hold true. A number‐of‐particles dependence cannot be detected for any of 12 different thermodynamic properties. It is shown that a curious error compensation makes it impossible to discriminate between two classical choices for W in Boltzmann’s entropy relation S=kB ln W.

[1]  Jadran Vrabec,et al.  Vapour liquid equilibria of the Lennard-Jones fluid from the NpT plus test particle method , 1992 .

[2]  Rolf Lustig,et al.  Statistical thermodynamics in the classical molecular dynamics ensemble. I. Fundamentals , 1994 .

[3]  Giovanni Ciccotti,et al.  Molecular dynamics of rigid systems in cartesian coordinates: A general formulation , 1982 .

[4]  K. Shing,et al.  The chemical potential in dense fluids and fluid mixtures via computer simulation , 1982 .

[5]  D. Frenkel,et al.  An explicit expression for finite-size corrections to the chemical potential , 1989 .

[6]  W. Steele,et al.  On the thermodynamics of liquid propane. A molecular dynamics study , 1988 .

[7]  Johann Fischer,et al.  Vapour liquid equilibrium of a pure fluid from test particle method in combination with NpT molecular dynamics simulations , 1990 .

[8]  R. Schmidt,et al.  A new form of the equation of state for pure substances and its application to oxygen , 1985 .

[9]  J. Fischer,et al.  Influence of intermolecular potential parameters on orthobaric properties of fluids consisting of spherical and linear molecules , 1984 .

[10]  P. Cheung On the calculation of specific heats, thermal pressure coefficients and compressibilities in molecular dynamics simulations , 1977 .

[11]  Pearson,et al.  Laplace-transform technique for deriving thermodynamic equations from the classical microcanonical ensemble. , 1985, Physical review. A, General physics.

[12]  B. Guillot,et al.  Investigation of the chemical potential by molecular dynamics simulation , 1985 .

[13]  J. H. Cushman,et al.  A new computational approach to the chemical potential , 1990 .

[14]  L. Scriven,et al.  Efficient molecular simulation of chemical potentials , 1989 .

[15]  K. Chao,et al.  A method of molecular simulation of free energy , 1992 .

[16]  W. Steele,et al.  A molecular dynamics study of the thermodynamics of liquid ethane , 1989 .

[17]  Rolf Lustig,et al.  Statistical thermodynamics in the classical molecular dynamics ensemble. II. Application to computer simulation , 1994 .

[18]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[19]  W. Steele,et al.  Specific heats for simple molecular fluids from molecular dynamics simulations , 1989 .

[20]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .