MOEA/D-HH: A Hyper-Heuristic for Multi-objective Problems

Hyper-Heuristics is a high-level methodology for selection or automatic generation of heuristics for solving complex problems. Despite the hyper-heuristics success, there is still only a few multi-objective hyper-heuristics. Our approach, MOEA/D-HH, is a multi-objective selection hyper-heuristic that expands the MOEA/D framework. It uses an innovative adaptive choice function proposed in this work to determine the low level heuristic (Differential Evolution mutation strategy) that should be applied to each individual during a MOEA/D execution. We tested MOEA/D-HH in a well established set of 10 instances from the CEC 2009 MOEA Competition. MOEA/D-HH is compared with some important multi-objective optimization algorithms and the resultsobtained are promising.

[1]  Rajkumar Roy,et al.  Advances in Soft Computing , 2018, Lecture Notes in Computer Science.

[2]  Hugo Terashima-Marín,et al.  Approximating Multi-Objective Hyper-Heuristics for Solving 2D Irregular Cutting Stock Problems , 2010, MICAI.

[3]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[4]  Qingfu Zhang,et al.  Decomposition-Based Multiobjective Evolutionary Algorithm With an Ensemble of Neighborhood Sizes , 2012, IEEE Transactions on Evolutionary Computation.

[5]  Graham Kendall,et al.  A multi-objective hyper-heuristic based on choice function , 2014, Expert Syst. Appl..

[6]  Edmund K. Burke,et al.  An Improved Choice Function Heuristic Selection for Cross Domain Heuristic Search , 2012, PPSN.

[7]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[8]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[9]  Kaisa Miettinen,et al.  A new hybrid mutation operator for multiobjective optimization with differential evolution , 2011, Soft Comput..

[10]  Alex Alves Freitas,et al.  Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms , 2013, Genetic Programming and Evolvable Machines.

[11]  Edmund K. Burke,et al.  Practice and Theory of Automated Timetabling III , 2001, Lecture Notes in Computer Science.

[12]  Thomas Stützle,et al.  Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[13]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[14]  Sanja Petrovic,et al.  A mixture experiments multi-objective hyper-heuristic , 2013, J. Oper. Res. Soc..

[15]  John R. Woodward,et al.  Hyper-Heuristics , 2015, GECCO.

[16]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[17]  Thomas Bartz-Beielstein,et al.  Experimental Methods for the Analysis of Optimization Algorithms , 2010 .

[18]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[19]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[20]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[21]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[22]  Wali Khan Mashwani,et al.  A decomposition-based hybrid multiobjective evolutionary algorithm with dynamic resource allocation , 2012, Appl. Soft Comput..

[23]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[24]  Matthias Ehrgott,et al.  A discussion of scalarization techniques for multiple objective integer programming , 2006, Ann. Oper. Res..

[25]  Julio Ortega Lopera,et al.  A hybrid meta-heuristic for multi-objective vehicle routing problems with time windows , 2013, Comput. Ind. Eng..

[26]  Vincenzo Cutello,et al.  Parallel Problem Solving from Nature - PPSN XII , 2012, Lecture Notes in Computer Science.

[27]  E. Soubeiga,et al.  Multi-Objective Hyper-Heuristic Approaches for Space Allocation and Timetabling , 2005 .

[28]  Yves Le Traon,et al.  Artificial Mutation inspired Hyper-heuristic for Runtime Usage of Multi-objective Algorithms , 2013, ArXiv.

[29]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.