Isolation and characterization of human antigen-specific TCR alpha beta+ CD4(-)CD8- double-negative regulatory T cells.

Down-regulation of immune responses by regulatory T (Treg) cells is an important mechanism involved in the induction of tolerance to allo-antigens (Ags). Recently, a novel subset of Ag-specific T-cell receptor (TCR)alpha beta+ CD4(-)CD8- (double-negative [DN]) Treg cells has been found to be able to prevent the rejection of skin and heart allografts by specifically inhibiting the function of antigraft-specific CD8+ T cells. Here we demonstrate that peripheral DN Treg cells are present in humans, where they constitute about 1% of total CD3+ T cells, and consist of both naive and Ag-experienced cells. Similar to murine DN Treg cells, human DN Treg cells are able to acquire peptide-HLA-A2 complexes from antigen-presenting cells by cell contact-dependent mechanisms. Furthermore, such acquired peptide-HLA complexes appear to be functionally active, in that CD8+ T cells specific for the HLA-A2-restricted self-peptide, Melan-A, became sensitive to apoptosis by neighboring DN T cells after acquisition of Melan-A-HLA-A2 complexes and revealed a reduced proliferative response. These results demonstrate for the first time that a sizable population of peripheral DN Treg cells, which are able to suppress Ag-specific T cells, exists in humans. DN Treg cells may serve to limit clonal expansion of allo-Ag-specific T cells after transplantation.