Adaptive Tanaka-SugenoFuzzyCerebellar Model Articulation Controller forOutput TrackingControl

Thisstudyintroduces an adaptive Tanaka-Sugeno fuzzyCMAC (TS-FCMAC) foroutput tracking control ofnonlinear systems. Thisstructure has twoadvantages intwoaspects. First, todealwithhighly nonlinear andtimevarying plant, wemodified traditional CMAC intoa simple structure. Thiswillsignificantly increase thelearning speedandperformance. Second, if thecontrolled plants arewellknown,TS_FCMACis constructed assimilar astheTSfuzzy system suchthat parallel distribution compensator (PDC)canbedirectly applied fortheoutput tracking withslight modified first case.Two examples, Lorenz' s equation and linear piezoelectric ceramic motors, aregiven toillustrate output tracking performances.

[1]  Chun-Shin Lin,et al.  CMAC with General Basis Functions , 1996, Neural Networks.

[2]  Takayuki Yamada,et al.  Learning control using neural networks , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[3]  Chin-Teng Lin,et al.  Neural fuzzy systems , 1994 .