Gröbner basis solutions to satellite trajectory control by pole placement
暂无分享,去创建一个
[1] J. Pearson,et al. Pole placement using dynamic compensators , 1970 .
[2] Naresh K. Sinha,et al. Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.
[3] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[4] T. Rajagopalan,et al. Pole assignment with output feedback , 1984, Autom..
[5] Daniel Boley,et al. Numerical Methods for Linear Control Systems , 1994 .
[6] J. Rosenthal,et al. Output feedback pole placement with dynamic compensators , 1996, IEEE Trans. Autom. Control..
[7] Jan Verschelde,et al. Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.
[8] J. Verschelde,et al. Numerical Homotopy Algorithms for Satellite Trajectory Control by Pole Placement 1 , 2002 .
[9] A. ADoefaa,et al. ? ? ? ? f ? ? ? ? ? , 2003 .
[10] Jan Verschelde,et al. Computing dynamic output feedback laws , 2004, IEEE Transactions on Automatic Control.
[11] Martin Byröd,et al. A Column-Pivoting Based Strategy for Monomial Ordering in Numerical Gröbner Basis Calculations , 2008, ECCV.
[12] Zuzana Kukelova,et al. Automatic Generator of Minimal Problem Solvers , 2008, ECCV.
[13] Zuzana Kukelova,et al. A Minimal Solution to Radial Distortion Autocalibration , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[14] Zuzana Kukelova,et al. Making minimal solvers fast , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.
[15] Béla Paláncz,et al. Application of Dixon resultant to satellite trajectory control by pole placement , 2013, J. Symb. Comput..
[16] B. Paláncz. Numeric-Symbolic Solution for Satellite Trajectory Control by Pole Placement , 2013 .