A novel multiproxy approach to reconstruct the paleoecology of extinct cephalopods

[1]  P. Rawson,et al.  Cretaceous , 2020, Geological Society, London, Memoirs.

[2]  G. Askew,et al.  Swimming mechanics and propulsive efficiency in the chambered nautilus , 2018, Royal Society Open Science.

[3]  M. Rogov,et al.  Cephalopod embryonic shells as a tool to reconstruct reproductive strategies in extinct taxa , 2018, Biological reviews of the Cambridge Philosophical Society.

[4]  C. Reeves The development of the East African margin during Jurassic and Lower Cretaceous times: a perspective from global tectonics , 2017, Petroleum Geoscience.

[5]  S. Brassell,et al.  Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes , 2017 .

[6]  A. Tomašových,et al.  TAPHONOMIC CLOCK AND BATHYMETRIC DEPENDENCE OF CEPHALOPOD PRESERVATION IN BATHYAL, SEDIMENT-STARVED ENVIRONMENTS , 2017, Palaios.

[7]  E. Griesshaber,et al.  Belemnite biomineralization, development, and geochemistry: The complex rostrum of Neohibolites minimus , 2017 .

[8]  Anthony J. Giuffre,et al.  Nacre tablet thickness records formation temperature in modern and fossil shells , 2017 .

[9]  W. Jokat,et al.  Anomalous bathymetry and palaeobathymetric models of the Mozambique Basin and Riiser Larsen Sea , 2016 .

[10]  A. Immenhauser,et al.  Impact of diagenetic alteration on brachiopod shell magnesium isotope (δ26Mg) signatures: Experimental versus field data , 2016 .

[11]  S. Zachow,et al.  Comparative cephalopod shell strength and the role of septum morphology on stress distribution , 2016, PeerJ.

[12]  J. Sessa,et al.  Microstructural preservation and the effects of diagenesis on the carbon and oxygen isotope composition of Late Cretaceous aragonitic mollusks from the Gulf Coastal Plain and the Western Interior Seaway , 2016, American Journal of Science.

[13]  Xianghui Xiao,et al.  Evidence for a composite organic–inorganic fabric of belemnite rostra: Implications for palaeoceanography and palaeoecology , 2016 .

[14]  S. Peters,et al.  Oxygen Isotope Variability within Nautilus Shell Growth Bands , 2016, PloS one.

[15]  C. Reeves,et al.  Insight into the Eastern Margin of Africa from a new tectonic model of the Indian Ocean , 2016, Special Publications.

[16]  K. Tanabe,et al.  Early Albian marine environments in Madagascar: An integrated approach based on oxygen, carbon and strontium isotopic data , 2016 .

[17]  K. Ritterbush Interpreting drag consequences of ammonoid shells by comparing studies in Westermann Morphospace , 2016, Swiss Journal of Palaeontology.

[18]  A. Niedermayr,et al.  Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment , 2016 .

[19]  H. Westphal,et al.  Food for thought: Mathematical approaches for the conversion of high-resolution sclerochronological oxygen isotope records into sub-annually resolved time series , 2015 .

[20]  K. Moriya Evolution of habitat depth in the Jurassic–Cretaceous ammonoids , 2015, Proceedings of the National Academy of Sciences.

[21]  I. Letofsky-Papst,et al.  Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments , 2015 .

[22]  J. Mutterlose,et al.  Biological and environmental signals recorded in shells of Argonauta argo (Cephalopoda, Octobrachia) from the Sea of Japan , 2015 .

[23]  A. Prokoph,et al.  Temperatures and oxygen isotopic composition of Phanerozoic oceans , 2015 .

[24]  P. Ward,et al.  Carbon isotope (δ13C) differences between Late Cretaceous ammonites and benthic mollusks from Antarctica , 2015 .

[25]  J. Sessa,et al.  Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms , 2014, Proceedings of the National Academy of Sciences.

[26]  C. Korte,et al.  Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution , 2014, Proceedings of the National Academy of Sciences.

[27]  C. Reeves The position of Madagascar within Gondwana and its movements during Gondwana dispersal , 2014 .

[28]  R. Hoffmann,et al.  Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history , 2014 .

[29]  I. Kruta,et al.  A New Approach for the Determination of Ammonite and Nautilid Habitats , 2014, PloS one.

[30]  C. Korte,et al.  The Giant Pacific Oyster (Crassostrea gigas) as a modern analog for fossil ostreoids: Isotopic (Ca, O, C) and elemental (Mg/Ca, Sr/Ca, Mn/Ca) proxies , 2013 .

[31]  M. Dietzel,et al.  The Rate and Mechanism of Deep-Sea Glauconite Formation at the Ivory Coast-Ghana Marginal Ridge , 2013, Clays and Clay Minerals.

[32]  J. Mahoney,et al.  Cretaceous Basalts in Madagascar and the Transition Between Plume and Continental Lithosphere Mantle Sources , 2013 .

[33]  Benjamin Marie,et al.  Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell , 2012, Proceedings of the National Academy of Sciences.

[34]  W. W. Hay,et al.  New thoughts about the Cretaceous climate and oceans , 2012 .

[35]  D. Bottjer,et al.  Westermann Morphospace displays ammonoid shell shape and hypothetical paleoecology , 2012, Paleobiology.

[36]  K. Föllmi Early Cretaceous life, climate and anoxia , 2012 .

[37]  J. Valley,et al.  Mollusk shell nacre ultrastructure correlates with environmental temperature and pressure. , 2012, Journal of the American Chemical Society.

[38]  W. Jokat,et al.  The Jurassic history of the Africa–Antarctica corridor — new constraints from magnetic data on the conjugate continental margins , 2012 .

[39]  R. Norris,et al.  Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth's temperature and carbon cycle , 2012 .

[40]  T. Velivetskaya,et al.  Cretaceous climate oscillations in the southern palaeolatitudes: New stable isotope evidence from India and Madagascar , 2011 .

[41]  N. Marshall,et al.  Vertical Distribution and Migration Patterns of Nautilus pompilius , 2011, PloS one.

[42]  R. Mapes,et al.  Septal implosion in Late Carboniferous coiled nautiloids from Ohio , 2010 .

[43]  M. Harzhauser,et al.  Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C) , 2010 .

[44]  D. Mccarty,et al.  Petrology and palaeoenvironmental significance of authigenic iron-rich clays, carbonates and apatite in the Claiborne Group, Middle Eocene, NE Texas , 2010 .

[45]  Michael Kube,et al.  Parallel evolution of nacre building gene sets in molluscs. , 2010, Molecular biology and evolution.

[46]  P. Harries,et al.  Effect of diagenesis on the Sr, O, and C isotope composition of late Cretaceous mollusks from the Western Interior Seaway of North America , 2010, American Journal of Science.

[47]  A. Colaço,et al.  The Influence of Hydrostatic Pressure on Shell Mineralization of Anodonta cygnea: A Comparative Study with a Hydrothermal Vent Bivalve Bathymodiolus azoricus , 2009 .

[48]  J. Scourse,et al.  A novel method for imaging internal growth patterns in marine mollusks : A fluorescence case study on the aragonitic shell of the marine bivalve Arctica islandica ( Linnaeus ) , 2009 .

[49]  A. Immenhauser Estimating palaeo-water depth from the physical rock record , 2009 .

[50]  B. Marie,et al.  Evolution of Nacre: Biochemistry and Proteomics of the Shell Organic Matrix of the Cephalopod Nautilus macromphalus , 2009, Chembiochem : a European journal of chemical biology.

[51]  W. Hay Evolving ideas about the Cretaceous climate and ocean circulation , 2008 .

[52]  T. Adatte,et al.  Coastal sediments from the Algarve: low-latitude climate archive for the Aptian-Albian , 2008 .

[53]  P. Hofmann,et al.  Rapid warming and salinity changes of Cretaceous surface waters in the subtropical North Atlantic , 2008 .

[54]  C. Hillaire‐Marcel,et al.  Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration , 2007 .

[55]  C. Lécuyer,et al.  Stable isotope compositions of a late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere? , 2006 .

[56]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[57]  G. Schmiedl,et al.  Millennial- to Centennial-Scale Interruptions of the Oceanic Anoxic Event 1b (Early Albian, mid-Cretaceous) Inferred from Benthic Foraminiferal Repopulation Events , 2005 .

[58]  C. Lécuyer,et al.  Carbon and oxygen isotope composition of Nautilus macromphalus: a record of thermocline waters off New Caledonia , 2004 .

[59]  Stefan Schouten,et al.  Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids , 2003 .

[60]  G. Dromart,et al.  Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels , 2003 .

[61]  H. Kawahata,et al.  Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure , 2003 .

[62]  J. Götze,et al.  Progress in application of cathodoluminescence (CL) in sedimentary petrology , 2003 .

[63]  J. Fenner Middle and Late Albian geography, oceanography, and climate and the setting of the Kirchrode I and II borehole sites , 2001 .

[64]  W. A. Wescott,et al.  Depositional history and stratigraphical evolution of the Sakamena group (Middle Karoo Supergroup) in the southern Morondava Basin, Madagascar , 1997 .

[65]  A. Amorosi Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research , 1997 .

[66]  S. Kelley,et al.  Timing of Hot Spot—Related Volcanism and the Breakup of Madagascar and India , 1995, Science.

[67]  J. V. Lalaharisaina,et al.  Cretaceous may hold promise in Majunga basin, Madagascar , 1994 .

[68]  J. D. Hudson,et al.  The stable isotopic records of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), UK: palaeoenvironmental implications , 1994, Journal of the Geological Society.

[69]  T. Oba,et al.  Early life history and habitat of Nautilus pompilius inferred from oxygen isotope examinations , 1992 .

[70]  D. Jacobs Shape, Drag, and Power in Ammonoid Swimming , 1992, Paleobiology.

[71]  G. Wefer,et al.  Isotope paleontology: growth and composition of extant calcareous species , 1991 .

[72]  J. Dravis,et al.  Enhanced Carbonate Petrography Using Fluorescence Microscopy , 1985 .

[73]  P. Ward,et al.  Remote telemetry of daily vertical and horizontal movement of Nautilus in Palau , 1984, Nature.

[74]  Adolf Seilacher,et al.  ARBEITSKONZEPT ZUR KONSTRUKTIONS‐MORPHOLOGIE , 1970 .

[75]  R. Eichler,et al.  Isotopic Evidence on the Early Life History of Nautilus pompilius (Linn�) , 1966, Science.

[76]  O. H. Schindewolf Pilze in oberjurassischen Ammoniten-Schalen , 1963 .

[77]  O. H. Schindewolf Parasitäre Thallophyten in Ammoniten-Schalen , 1962 .

[78]  H. Urey,et al.  MEASUREMENT OF PALEOTEMPERATURES AND TEMPERATURES OF THE UPPER CRETACEOUS OF ENGLAND, DENMARK, AND THE SOUTHEASTERN UNITED STATES , 1951 .

[79]  I. Kruta,et al.  Adaptations to squid-style high-speed swimming in Jurassic belemnitids , 2016, Biology Letters.

[80]  Kurt Wiedenroth,et al.  Stable isotope data (δ18O, δ13C) of the ammonite genus Simbirskites — implications for habitat reconstructions of extinct cephalopods , 2015 .

[81]  A. Gale,et al.  Ammonite and inoceramid biostratigraphy and biogeography of the Cenomanian through basal Middle Campanian (Upper Cretaceous) of the Morondava Basin, western Madagascar , 2014 .

[82]  Benjamin Marie,et al.  The formation and mineralization of mollusk shell. , 2012, Frontiers in bioscience.

[83]  E. Grossman Chapter 10 – Oxygen Isotope Stratigraphy , 2012 .

[84]  LF Reis Techniques , 2007, Modern Pathology.

[85]  T. Steuber,et al.  Stable isotope records (O, C) of Jurassic aragonitic shells from England and NW Poland: palaeoecologic and environmental implications , 2002 .

[86]  C. Pierre THE OXYGEN AND CARBON ISOTOPE DISTRIBUTION IN THE MEDITERRANEAN WATER MASSES , 1999 .

[87]  S. Kidwell Time-averaging in the marine fossilrecord: Overview of strategies and uncertainties , 1997 .

[88]  G. Westermann Ammonoid Life and Habitat , 1996 .

[89]  P. Rabinowitz,et al.  The Mesozoic East African and Madagascan Conjugate Continental Margins: Stratigraphy and Tectonics: Chapter 12: African and Mediterranean Margins , 1992 .

[90]  A. Seilacher Self-Organizing Mechanisms in Morphogenesis and Evolution , 1991 .

[91]  P. Rabinowitz,et al.  Evolution of the conjugate East African-Madagascan margins and the Western Somali Basin , 1988 .

[92]  G. Odin,et al.  Chapter C4 Geological Significance of the Glaucony Facies , 1988 .

[93]  P. Ward The natural history of Nautilus , 1987 .

[94]  T. Anderson,et al.  Stable Isotopes of Oxygen and Carbon and their Application to Sedimentologic and Paleoenvironmental Problems , 1983 .

[95]  A. Nairn,et al.  An Outline of the Geology of Madagascar , 1982 .

[96]  John A Chamberlain Jun. Flow patterns and drag coefficients of cephalopod shells , 1976 .

[97]  N. Shackleton,et al.  Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281 , 1975 .