Investigation of even–even 220–230Th isotopes within the IBM, IVBM and BM
暂无分享,去创建一个
[1] D. Lenis,et al. Analytic description of critical point actinides in a transition from octupole deformation to octupole vibrations , 2005, HNPS Proceedings.
[2] FACOLTA’ DI Medicina,et al. ROMA , 2019, Springer Reference Medizin.
[3] I. Hossain,et al. Calculation of some of the nuclear properties of even-even 172-176Hf isotopes using IBM-1 , 2018 .
[4] M. Al-Jubbori,et al. Determine the 134-140 Nd isotopes identity using IBM and NEF , 2018 .
[5] I. Hossain,et al. Theoretical description of the deformation properties for 154-164 Gd isotopes , 2018 .
[6] M. Al-Jubbori. Investigation of Energy Levels and Electromagnetic Transitions for Yb–Pt Nuclei with N = 108 Using IBM, IVBM, and BMM , 2017 .
[7] H. H. Kassim. Description of the Ba–Dy(N = 92) nuclei in the interacting boson model , 2017 .
[8] N. Al-Dahan. Descriptive study of the even-even actinide nuclei 230 − 234Th isotopes using IBM-1 , 2017 .
[9] S.M. Imran Hossain,et al. Microscopic description of the even-even 140-148Ba isotopes using BM, IBM and IVBM , 2017 .
[10] A. K. Hasan,et al. Transition Probabilities, and Potential Energy Surfaces for 120-126Xe Even-Even Isotopes , 2017 .
[11] I. Hossain,et al. Nuclear structure of even 120-136 Ba under the framework of IBM, IVBM and new method (SEF) , 2016 .
[12] I. Hossain,et al. Nuclear structure of yrast bands of 180Hf, 182W, and 184Os nuclei by means of interacting boson model-1 , 2016 .
[13] N. Minkov,et al. Octupole deformation in light actinides within an analytic quadrupole octupole axially symmetric model with a Davidson potential , 2015, 1504.04837.
[14] M. Al-Jubbori,et al. The rotational–vibrational properties of 178−188Os isotopes , 2015 .
[15] S.M. Imran Hossain,et al. U(5) Symmetry of Even 96,98Ru Isotopes Under the Framework of Interacting Boson Model (IBM-1) , 2015 .
[16] M. Khandaker,et al. Correspondence between phenomenological and IBM-1 models of even isotopes of Yb , 2014, 1408.0072.
[17] D. Vretenar,et al. Microscopic description of octupole shape-phase transitions in light actinide and rare-earth nuclei , 2014, 1402.6102.
[18] 野村 昂亮. Interacting boson model from energy density functionals , 2012 .
[19] P. Cejnar,et al. Quantum phase transitions in the shapes of atomic nuclei , 2010 .
[20] R. Hertenberger,et al. Spectroscopy of 230 Th in the ( p,t) reaction , 2009 .
[21] R. Hertenberger,et al. Spectroscopy of 230Th in the (p,t) reactionA.I.Levon, G.Graw, Y.Eisermann, R.Hertenberger, J.Jolie, N.Yu.Shirikova, A.E.Stuchbery, A.V.Sushkov, P.G.Thirolf, H.-F.Wirth, N.V.Zamfir , 2009, 0902.1050.
[22] P. Bizzeti,et al. Description of nuclear octupole and quadrupole deformation close to axial symmetry: Critical-point behavior of {sup 224}Ra and {sup 224}Th , 2008, 0802.0659.
[23] R. Casten,et al. TOPICAL REVIEW: Quantum phase transitions and structural evolution in nuclei , 2007 .
[24] E. Mccutchan,et al. Crossing contours in the interacting boson approximation (IBA) symmetry triangle , 2006 .
[25] P. Bizzeti,et al. Description of nuclear octupole and quadrupole deformation close to the axial symmetry and phase transitions in the octupole mode , 2004, nucl-th/0409031.
[26] H. Ganev,et al. Description of the ground and octupole bands in the symplectic extension of the interacting vector boson model , 2003, nucl-th/0309067.
[27] D. Meyer,et al. Signature for vibrational to rotational evolution along the yrast line. , 2003, Physical review letters.
[28] D. Kusnezov,et al. Octupole correlations in U and Pu nuclei , 2003 .
[29] D. Warner. Nuclear physics: A triple point in nuclei , 2002, Nature.
[30] D. Kusnezov,et al. Octupole correlations in the transitional actinides and the spdf interacting boson model , 2001 .
[31] Iachello. Dynamic symmetries at the critical point , 2000, Physical review letters.
[32] N. Minkov,et al. Δ I = 1 staggering in octupole bands of light actinides: “Beat” patterns , 2000, nucl-th/0105077.
[33] Bonatsos,et al. Successive energy ratios in medium- and heavy-mass nuclei as indicators of different kinds of collectivity. , 1991, Physical review. C, Nuclear physics.
[34] D. Kusnezov. The U(16) algebraic lattice. II, Analytic construction , 1990 .
[35] M. Kalelkar,et al. Introductory nuclear physics , 1990 .
[36] D. Kusnezov. The U(16) algebraic lattice , 1989 .
[37] R. Casten,et al. The interacting boson approximation , 1988 .
[38] F. Iachello,et al. INTERACTING BOSON MODEL OF COLLECTIVE OCTUPOLE STATES (I). The rotational limit , 1987 .
[39] Sood,et al. Octupole deformation at high spin in the Ba-Sm region. , 1986, Physical review. C, Nuclear physics.
[40] Kumar,et al. Nuclear structure of Sr, Zr, and Mo isotopes. , 1985, Physical review. C, Nuclear physics.
[41] Engel,et al. Quantization of asymmetric shapes in nuclei. , 1985, Physical review letters.
[42] A. Georgieva,et al. Rotational limit of the interacting two-vector boson model , 1983 .
[43] A. Georgieva,et al. Interacting two-vector-boson model of collective motions in nuclei , 1982 .
[44] Francesco Iachello,et al. Interacting boson model , 1981 .
[45] Francesco Iachello,et al. Interacting boson model of collective nuclear states IV. The O(6) limit , 1979 .
[46] O. Scholten,et al. Interacting boson model of collective nuclear states III. The transition from SU(5) to SU(3) , 1978 .
[47] A. Arima,et al. Interacting boson model of collective nuclear states II. The rotational limit , 1978 .
[48] A. Arima,et al. Interacting boson model of collective states I. The vibrational limit , 1976 .
[49] R. A. Sorensen. Nuclear moment of inertia at high spin , 1973 .
[50] G. Breit,et al. Nuclear Structure, Vol. 1 , 1970 .
[51] J. Weneser,et al. System of Even-Even Nuclei , 1955 .