Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers

[1]  Liu Yong,et al.  New trends, strategies and opportunities in thermoelectric materials: A perspective , 2017 .

[2]  Feliciano Giustino,et al.  Electron-phonon interactions from first principles , 2016, 1603.06965.

[3]  Yuan Liu,et al.  Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb , 2016, Proceedings of the National Academy of Sciences.

[4]  Claudia Felser,et al.  Engineering half-Heusler thermoelectric materials using Zintl chemistry , 2016 .

[5]  Marco Buongiorno Nardelli,et al.  Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. , 2015, Nature materials.

[6]  Feliciano Giustino,et al.  Fröhlich Electron-Phonon Vertex from First Principles. , 2015, Physical review letters.

[7]  M. Calandra,et al.  Wannier interpolation of the electron-phonon matrix elements in polar semiconductors: Polar-optical coupling in GaAs , 2015, 1508.06172.

[8]  M. Søndergaard,et al.  Large Seebeck effect by charge-mobility engineering , 2015, Nature Communications.

[9]  Liping Yu,et al.  Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. , 2014, Nature chemistry.

[10]  David J. Singh,et al.  Connecting thermoelectric performance and topological-insulator behavior: Bi$_2$Te$_3$ and Bi$_{2}$Te$_{2}$Se from first principles , 2014, 1412.5407.

[11]  Tiejun Zhu,et al.  The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials , 2014, Scientific Reports.

[12]  Z. J. Wang,et al.  A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.

[13]  Stefano Curtarolo,et al.  Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling , 2014, 1401.2439.

[14]  Q. Gibson,et al.  Experimental realization of a three-dimensional Dirac semimetal. , 2013, Physical review letters.

[15]  Su-Yang Xu,et al.  Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 , 2013, Nature Communications.

[16]  Zhifeng Ren,et al.  Recent progress of half-Heusler for moderate temperature thermoelectric applications , 2013 .

[17]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[18]  David J. Singh,et al.  Doping and temperature dependence of thermoelectric properties in Mg2(Si,Sn) , 2012 .

[19]  Anna Köhler,et al.  Charge transport in organic semiconductors. , 2012, Topics in current chemistry.

[20]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[21]  Steven G. Louie,et al.  EPW: A program for calculating the electron-phonon coupling using maximally localized Wannier functions , 2010, Comput. Phys. Commun..

[22]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  张文清 Evaluation of Half-Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties , 2008 .

[24]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[25]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[26]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[27]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[28]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[29]  B. Zhang,et al.  Thermoelectric Properties of Half-Heusler Bismuthides ZrCo1−xNixBi (x = 0.0 to 0.1) , 2007 .

[30]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[31]  J. Ziman Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[34]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[35]  R. Hoffman Solids and Surfaces: A Chemist's View of Bonding in Extended Structures , 1989 .

[36]  Christensen,et al.  Acoustic deformation potentials and heterostructure band offsets in semiconductors. , 1987, Physical review. B, Condensed matter.

[37]  Jean-Pol Vigneron,et al.  Computation of crystal Green's functions in the complex-energy plane with the use of the analytical tetrahedron method , 1984 .

[38]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[39]  E. P. Lewis In perspective. , 1972, Nursing outlook.

[40]  Daniel L. Rode,et al.  Electron Transport in InSb, InAs, and InP , 1971 .

[41]  Harvey Brooks,et al.  Theory of the Electrical Properties of Germanium and Silicon , 1955 .

[42]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[43]  K. Cheng Theory of Superconductivity , 1948, Nature.

[44]  J. Kendall Inorganic Chemistry , 1944, Nature.