A sequential procedure for simultaneous estimation of several means

Sequential procedures for controlling the length of a simulation run are widely used when a single mean is estimated, In many practical situations, however, the analyst is simultaneously interested in several means We propose a sequential procedure for controlling the length of a simulation run when several means are simultaneously estimated. A lower bound on the overall level of confidence for a set of interval estimates on each mean is obtained with the Bonferroni inequality. The primary advantage of applying the Bonferrom inequality is that the precision are easy to interpret. In addition, we can use the existing methods for estlmatmg the variances of the means, since the covariances of estimates are not needed,

[1]  O. J. Dunn Multiple Comparisons among Means , 1961 .

[2]  Shirley Lehman Exact and Approximate Distributions for the Wilcoxon Statistic with Ties , 1961 .

[3]  H. Robbins,et al.  ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN. , 1965 .

[4]  A. Nádas An Extension of a Theorem of Chow and Robbins on Sequential Confidence Intervals for the Mean , 1969 .

[5]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1974 .

[6]  Leonard Kleinrock,et al.  Queueing Systems: Volume I-Theory , 1975 .

[7]  C. H. Sauer,et al.  Sequential stopping rules for the regenerative method of simulation , 1977 .

[8]  Averill M. Law,et al.  A Sequential Procedure for Determining the Length of a Steady-State Simulation , 1979, Oper. Res..

[9]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[10]  Lee W. Shruben Control of initialization bias in multivariate simulation response , 1981 .

[11]  Lee W. Schruben Control of initialization bias in multivariate simulation response , 1981, CACM.

[12]  Philip Heidelberger,et al.  A spectral method for confidence interval generation and run length control in simulations , 1981, CACM.

[13]  A. Law,et al.  Relative width sequential confidence intervals for the mean , 1981 .

[14]  J. Richmond A General Method for Constructing Simultaneous Confidence Intervals , 1982 .

[15]  Averill M. Law,et al.  Confidence Intervals for Steady-State Simulations II: A Survey of Sequential Procedures , 1982 .

[16]  Andrew F. Seila,et al.  Multivariate estimation in regenerative simulation , 1982, Oper. Res. Lett..

[17]  T. M. Williams Practical Methods of Optimization. Vol. 2 — Constrained Optimization , 1982 .

[18]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[19]  Andrew F. Seila Multivariate estimation in simulation , 1983, WSC '83.

[20]  R. Sargent,et al.  Validation of Simulation Models via Simultaneous Confidence Intervals , 1984 .

[21]  Andrew F. Seila Multivariate Simulation Output Analysis , 1984 .

[22]  Charles A. Pratt The society for computer simulation , 1984, SIML.

[23]  Paul Kabaila,et al.  On confidence regions for the mean of a multivariate time series , 1985 .

[24]  James R. Wilson,et al.  The efficiency of control variates in multiresponse simulation , 1986 .

[25]  Halim Damerdji On strong consistency of the variance estimator , 1987, WSC '87.

[26]  Andrew F. Seila,et al.  Multivariate inference in stationary simulation using batch means , 1987, WSC '87.

[27]  James R. Wilson,et al.  Estimation procedures based on control variates with known covariance matrix , 1987, WSC '87.

[28]  R. Fletcher Practical Methods of Optimization , 1988 .

[29]  John M. Charnes,et al.  A comparison of confidence region estimators for multivariate simulation output , 1988, WSC '88.

[30]  Wei-Ning Yang,et al.  Multivariate estimation and variance reduction in terminating and steady-state simulation , 1988, WSC '88.

[31]  Kimmo E. E. Raatikainen,et al.  Sequential procedure for simultaneous estimation of several percentiles , 1990 .

[32]  John M. Charnes,et al.  Power comparisons for the multivariate batch-means method , 1990, 1990 Winter Simulation Conference Proceedings.

[33]  Krzysztof Pawlikowski,et al.  Steady-state simulation of queueing processes: survey of problems and solutions , 1990, CSUR.

[34]  John M. Charnes,et al.  Multivariate simulation output analysis , 1991, 1991 Winter Simulation Conference Proceedings..

[35]  B. Nelson,et al.  Multivariate batch means and control variates , 1992 .

[36]  R. Deal Simulation Modeling and Analysis (2nd Ed.) , 1994 .