Level of detail continuum for huge geometric data

In this paper we propose a unified solution for the creation of levels of detail on very large input data. We build a hierarchical signed distance function in an octree around the data and use this hierarchy to generate a continuum of levels of detail. Our distance function construction, based on the Gradient Vector Flow and the Poisson equation, builds on multigrid resolution algorithms. Using an appropriate interpolation scheme within the octree we obtain a continuous hierarchical distance function, which allows us to define a continuum of levels of detail for huge geometries. During this process, holes and undersampling issues in the input data are automatically corrected. We present three applications of our hierarchy: a novel hierarchical deformable model scheme that can automatically reconstruct closed Eulerian meshes of up to a million faces in a few minutes, an alternate distance-driven contouring approach, and raytracing of huge data models.

[1]  Francis Schmitt,et al.  Silhouette and stereo fusion for 3D object modeling , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[2]  Guillermo Sapiro,et al.  Inpainting surface holes , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[3]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[4]  Roni Yagel,et al.  Octree-based decimation of marching cubes surfaces , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[5]  Jian Huang,et al.  A complete distance field representation , 2001, Proceedings Visualization, 2001. VIS '01..

[6]  Jules Bloomenthal,et al.  An Implicit Surface Polygonizer , 1994, Graphics Gems.

[7]  Marc Levoy The Digital Michelangelo Project , 1999, Comput. Graph. Forum.

[8]  N. Amenta,et al.  Defining point-set surfaces , 2004, SIGGRAPH 2004.

[9]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[10]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[11]  Steve Marschner,et al.  Filling holes in complex surfaces using volumetric diffusion , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[12]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[13]  H. Seidel,et al.  Multi-level partition of unity implicits , 2003 .

[14]  Dinesh Manocha,et al.  DiFi: Fast 3D Distance Field Computation Using Graphics Hardware , 2004, Comput. Graph. Forum.

[15]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[16]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2005, SIGGRAPH Courses.

[17]  S. Osher,et al.  Fast surface reconstruction using the level set method , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[18]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[19]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[20]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[22]  H. Pottmann,et al.  The d2-Tree: A Hierarchical Representation of the Squared Distance Function , 2003 .

[23]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[24]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[25]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[26]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2005, SIGGRAPH Courses.

[27]  Sarah F. Frisken Using Distance Maps for Accurate Surface Representation in Sampled Volumes , 1998, VVS.

[28]  J. Baerentzen,et al.  On the Implementation of Fast Marching Methods for 3d Lattices , .

[29]  D. Jung,et al.  Octree-based hierarchical distance maps for collision detection , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[30]  Amitabh Varshney,et al.  Controlled Topology Simplification , 1996, IEEE Trans. Vis. Comput. Graph..

[31]  Junaed Sattar Snakes , Shapes and Gradient Vector Flow , 2022 .

[32]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[33]  Francis Schmitt,et al.  Silhouette and stereo fusion for 3D object modeling , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[34]  Paolo Cignoni,et al.  An easy-to-use visualization system for huge cultural heritage meshes , 2001, VAST '01.

[35]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[36]  ISAAC COHEN,et al.  Using deformable surfaces to segment 3-D images and infer differential structures , 1992, CVGIP Image Underst..

[37]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[38]  Concettina Guerra,et al.  Model-based and image-based 3D scene representation for interactive visualization , 2004, Comput. Vis. Image Underst..

[39]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..