Approximate Bayesian computation in large-scale structure : constraining the galaxy-halo connection
暂无分享,去创建一个
David W. Hogg | ChangHoon Hahn | Andrew P. Hearin | D. Hogg | D. Campbell | M. Vakili | Mohammadjavad Vakili | Duncan Campbell | Kilian Walsh | C. Hahn | Kilian Walsh
[1] S. More,et al. Cosmological constraints from a combination of galaxy clustering and lensing – I. Theoretical framework , 2012, 1206.6890.
[2] Risa H. Wechsler,et al. THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.
[3] A. Kashlinsky,et al. Large-scale structure in the Universe , 1991, Nature.
[4] J. Brinkmann,et al. THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS , 2013, 1311.1480.
[5] E. E. O. Ishida,et al. cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation , 2015, Astron. Comput..
[6] S. White,et al. An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.
[7] U. Washington,et al. The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.
[8] Towards cosmological concordance on galactic scales , 2003, astro-ph/0301104.
[9] M. Giavalisco,et al. A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.
[10] U. Seljak. Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.
[11] G. Efstathiou,et al. The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .
[12] A. N. Pettitt,et al. Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift , 2012, 1202.1426.
[13] Chieh-An Lin,et al. A new model to predict weak-lensing peak counts II. Parameter constraint strategies , 2015, 1506.01076.
[14] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[15] B. Schmidt,et al. NUCLEOSYNTHESIS IN A PRIMORDIAL SUPERNOVA: CARBON AND OXYGEN ABUNDANCES IN SMSS J031300.36–670839.3 , 2015, 1505.03756.
[16] F. Kitaura,et al. Bayesian inference of cosmic density fields from non-linear, scale-dependent, and stochastic biased tracers , 2014, 1408.2566.
[17] Environmental influences on dark matter haloes and consequences for the galaxies within them , 1997, astro-ph/9710125.
[18] R. Wechsler,et al. THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.
[19] D. Weinberg,et al. The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.
[20] B. Jain,et al. How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.
[21] Hong Guo,et al. A NEW METHOD TO CORRECT FOR FIBER COLLISIONS IN GALAXY TWO-POINT STATISTICS , 2011, 1111.6598.
[22] David Higdon,et al. THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0902.0429.
[23] J. Tinker,et al. On the Mass-to-Light Ratio of Large-Scale Structure , 2004, astro-ph/0411777.
[24] P. Schneider,et al. Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.
[25] Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.
[26] Tristan L. Smith,et al. NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.
[27] R. Wechsler,et al. SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .
[28] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[29] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[30] J. Tinker,et al. The Effect of Fiber Collisions on the Galaxy Power Spectrum Multipole , 2016, 1609.01714.
[31] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[32] M. Feldman,et al. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.
[33] N. Kaiser. On the spatial correlations of Abell clusters , 1984 .
[34] J. Rhodes,et al. EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM z = 1 TO 0 , 2013, 1308.2974.
[35] S. More,et al. Cosmological Constraints from a Combination of Galaxy Clustering & Lensing - II. Fisher Matrix Analysis , 2012, 1207.0004.
[36] B. Santiago,et al. Large-Scale Morphological Segregation in the Center for Astrophysics Redshift Survey , 1992 .
[37] S. Colombi,et al. Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.
[38] Fermilab,et al. On the distribution of haloes, galaxies and mass , 2001, astro-ph/0105008.
[39] Non-linear stochastic galaxy biasing in cosmological simulations , 1999, astro-ph/9912073.
[40] A. Klypin,et al. Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.
[41] Michael S. Warren,et al. The cosmic code comparison project , 2007, 0706.1270.
[42] William H. Press,et al. Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .
[43] Erik Tollerud,et al. Introducing decorated HODs: modelling assembly bias in the galaxy–halo connection , 2015, 1512.03050.
[44] A. Klypin,et al. DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.
[45] Christopher J. Miller,et al. Percolation Galaxy Groups and Clusters in the SDSS Redshift Survey: Identification, Catalogs, and the Multiplicity Function , 2006, astro-ph/0601346.
[46] A. Dressler. Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .
[47] R. Somerville,et al. Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.
[48] P. Peebles,et al. The Large-Scale Structure of the Universe , 1980 .
[49] Case Western Reserve University,et al. Galaxy evolution from halo occupation distribution modeling of deep2 and sdss galaxy clustering , 2007, astro-ph/0703457.
[50] David N. Spergel,et al. An Efficient Technique to Determine the Power Spectrum from Cosmic Microwave Background Sky Maps , 1998, astro-ph/9805339.
[51] J. R. Bond,et al. Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .
[52] D. Higdon,et al. THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.
[53] A. Heavens,et al. Parameter inference with estimated covariance matrices , 2015, 1511.05969.
[54] R. B. Barreiro,et al. Component separation methods for the PLANCK mission , 2008, 0805.0269.
[55] Benjamin D. Wandelt,et al. Global, Exact Cosmic Microwave Background Data Analysis Using Gibbs Sampling , 2004 .
[56] S. More,et al. Satellite kinematics -I. A new method to constrain the halo mass-luminosity relation of central galaxies , 2008, 0807.4529.
[57] H. K. Eriksen,et al. Power Spectrum Estimation from High-Resolution Maps by Gibbs Sampling , 2004 .
[58] S. More,et al. Cosmological Constraints from a Combination of Galaxy Clustering and Lensing -- III. Application to SDSS Data , 2012, 1207.0503.
[59] Ravi Sheth,et al. Halo Models of Large Scale Structure , 2002, astro-ph/0206508.
[60] W. M. Wood-Vasey,et al. LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY , 2012, 1206.2563.
[61] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[62] A. Dutton,et al. Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles , 2014, 1402.7073.
[63] R. Nichol,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.
[64] P. Fosalba,et al. nIFTy cosmology: galaxy/halo mock catalogue comparison project on clustering statistics , 2014, 1412.7729.
[65] L. Knox,et al. Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.
[66] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.