Approximate Bayesian computation in large-scale structure : constraining the galaxy-halo connection

The standard approaches to Bayesian parameter inference in large scale structure (LSS) assume a Gaussian functional form (chi-squared form) for the likelihood. They are also typically restricted to measurements such as the two point correlation function. Likelihood free inferences such as Approximate Bayesian Computation (ABC) make inference possible without assuming any functional form for the likelihood, thereby relaxing the assumptions and restrictions of the standard approach. Instead it relies on a forward generative model of the data and a metric for measuring the distance between the model and data. In this work, we demonstrate that ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo occupation distribution (HOD) model for populating dark matter halos with galaxies. Using specific implementation of ABC supplemented with Population Monte Carlo importance sampling, a generative forward model using HOD, and a distance metric based on galaxy number density, two-point correlation function, and galaxy group multiplicity function, we constrain the HOD parameters of mock observation generated from selected "true" HOD parameters. The parameter constraints we obtain from ABC are consistent with the "true" HOD parameters, demonstrating that ABC can be reliably used for parameter inference in LSS. Furthermore, we compare our ABC constraints to constraints we obtain using a pseudo-likelihood function of Gaussian form with MCMC and find consistent HOD parameter constraints. Ultimately our results suggest that ABC can and should be applied in parameter inference for LSS analyses.

[1]  S. More,et al.  Cosmological constraints from a combination of galaxy clustering and lensing – I. Theoretical framework , 2012, 1206.6890.

[2]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[3]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[4]  J. Brinkmann,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS , 2013, 1311.1480.

[5]  E. E. O. Ishida,et al.  cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation , 2015, Astron. Comput..

[6]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[7]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[8]  Towards cosmological concordance on galactic scales , 2003, astro-ph/0301104.

[9]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[10]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[11]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[12]  A. N. Pettitt,et al.  Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift , 2012, 1202.1426.

[13]  Chieh-An Lin,et al.  A new model to predict weak-lensing peak counts II. Parameter constraint strategies , 2015, 1506.01076.

[14]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[15]  B. Schmidt,et al.  NUCLEOSYNTHESIS IN A PRIMORDIAL SUPERNOVA: CARBON AND OXYGEN ABUNDANCES IN SMSS J031300.36–670839.3 , 2015, 1505.03756.

[16]  F. Kitaura,et al.  Bayesian inference of cosmic density fields from non-linear, scale-dependent, and stochastic biased tracers , 2014, 1408.2566.

[17]  Environmental influences on dark matter haloes and consequences for the galaxies within them , 1997, astro-ph/9710125.

[18]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[19]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[20]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[21]  Hong Guo,et al.  A NEW METHOD TO CORRECT FOR FIBER COLLISIONS IN GALAXY TWO-POINT STATISTICS , 2011, 1111.6598.

[22]  David Higdon,et al.  THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0902.0429.

[23]  J. Tinker,et al.  On the Mass-to-Light Ratio of Large-Scale Structure , 2004, astro-ph/0411777.

[24]  P. Schneider,et al.  Why your model parameter confidences might be too optimistic - unbiased estimation of the inverse covariance matrix , 2006, astro-ph/0608064.

[25]  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[26]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[27]  R. Wechsler,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .

[28]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[29]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[30]  J. Tinker,et al.  The Effect of Fiber Collisions on the Galaxy Power Spectrum Multipole , 2016, 1609.01714.

[31]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[32]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[33]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[34]  J. Rhodes,et al.  EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM z = 1 TO 0 , 2013, 1308.2974.

[35]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering & Lensing - II. Fisher Matrix Analysis , 2012, 1207.0004.

[36]  B. Santiago,et al.  Large-Scale Morphological Segregation in the Center for Astrophysics Redshift Survey , 1992 .

[37]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[38]  Fermilab,et al.  On the distribution of haloes, galaxies and mass , 2001, astro-ph/0105008.

[39]  Non-linear stochastic galaxy biasing in cosmological simulations , 1999, astro-ph/9912073.

[40]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[41]  Michael S. Warren,et al.  The cosmic code comparison project , 2007, 0706.1270.

[42]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[43]  Erik Tollerud,et al.  Introducing decorated HODs: modelling assembly bias in the galaxy–halo connection , 2015, 1512.03050.

[44]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[45]  Christopher J. Miller,et al.  Percolation Galaxy Groups and Clusters in the SDSS Redshift Survey: Identification, Catalogs, and the Multiplicity Function , 2006, astro-ph/0601346.

[46]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[47]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[48]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[49]  Case Western Reserve University,et al.  Galaxy evolution from halo occupation distribution modeling of deep2 and sdss galaxy clustering , 2007, astro-ph/0703457.

[50]  David N. Spergel,et al.  An Efficient Technique to Determine the Power Spectrum from Cosmic Microwave Background Sky Maps , 1998, astro-ph/9805339.

[51]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[52]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[53]  A. Heavens,et al.  Parameter inference with estimated covariance matrices , 2015, 1511.05969.

[54]  R. B. Barreiro,et al.  Component separation methods for the PLANCK mission , 2008, 0805.0269.

[55]  Benjamin D. Wandelt,et al.  Global, Exact Cosmic Microwave Background Data Analysis Using Gibbs Sampling , 2004 .

[56]  S. More,et al.  Satellite kinematics -I. A new method to constrain the halo mass-luminosity relation of central galaxies , 2008, 0807.4529.

[57]  H. K. Eriksen,et al.  Power Spectrum Estimation from High-Resolution Maps by Gibbs Sampling , 2004 .

[58]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering and Lensing -- III. Application to SDSS Data , 2012, 1207.0503.

[59]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[60]  W. M. Wood-Vasey,et al.  LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY , 2012, 1206.2563.

[61]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[62]  A. Dutton,et al.  Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles , 2014, 1402.7073.

[63]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[64]  P. Fosalba,et al.  nIFTy cosmology: galaxy/halo mock catalogue comparison project on clustering statistics , 2014, 1412.7729.

[65]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[66]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.