Degenerate Quantum LDPC Codes With Good Finite Length Performance

We study the performance of small and medium length quantum LDPC (QLDPC) codes in the depolarizing channel. Only degenerate codes with the maximal stabilizer weight much smaller than their minimum distance are considered. It is shown that with the help of an OSD-like post-processing the performance of the standard belief propagation (BP) decoder on many QLDPC codes can be improved by several orders of magnitude. Using this new BP-OSD decoder we study the performance of several known classes of degenerate QLDPC codes including the hypergraph product codes, the hyperbicycle codes, the homological product codes, and the Haah's cubic codes. We also construct several interesting examples of short generalized bicycle codes. Some of them have an additional property that their syndromes are protected by small BCH codes, which may be useful for the fault-tolerant syndrome measurement. We also propose a new large family of QLDPC codes that contains the class of hypergraph product codes, where one of the used parity-check matrices is square. It is shown that in some cases such codes have better performance than the hypergraph product codes. Finally, we demonstrate that the performance of the proposed BP-OSD decoder for some of the constructed codes is better than for a relatively large surface code decoded by a near-optimal decoder.

[1]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[2]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[3]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[4]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[5]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[6]  Matthew B. Hastings,et al.  Building manifolds from quantum codes , 2020, Geometric and Functional Analysis.

[7]  Jakov Snyders,et al.  Reliability-Based Syndrome Decoding of Linear Block Codes , 1998, IEEE Trans. Inf. Theory.

[8]  Barbara M. Terhal,et al.  Constructions and Noise Threshold of Hyperbolic Surface Codes , 2015, IEEE Transactions on Information Theory.

[9]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[10]  David Poulin,et al.  Neural Belief-Propagation Decoders for Quantum Error-Correcting Codes. , 2018, Physical review letters.

[11]  B. Dorsch,et al.  A decoding algorithm for binary block codes and J -ary output channels (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[12]  Shu Lin,et al.  Soft-decision decoding of linear block codes based on ordered statistics , 1994, IEEE Trans. Inf. Theory.

[13]  Leonid P. Pryadko,et al.  Distance Verification for Classical and Quantum LDPC Codes , 2016, IEEE Transactions on Information Theory.

[14]  Gleb Kalachev,et al.  Quantum LDPC Codes With Almost Linear Minimum Distance , 2020, IEEE Transactions on Information Theory.

[15]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[16]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[17]  L. Pryadko,et al.  Quantum Kronecker sum-product low-density parity-check codes with finite rate , 2012, 1212.6703.

[18]  Yuichiro Fujiwara,et al.  Ability of stabilizer quantum error correction to protect itself from its own imperfection , 2014, ArXiv.

[19]  Matthew B. Hastings,et al.  Homological product codes , 2013, STOC.

[20]  Gilles Zémor,et al.  Quantum LDPC codes with positive rate and minimum distance proportional to n½ , 2009, ISIT.

[21]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[22]  Soon Xin Ng,et al.  Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.

[23]  Marc P. C. Fossorier,et al.  Iterative reliability-based decoding of low-density parity check codes , 2001, IEEE J. Sel. Areas Commun..

[24]  Patrick Fitzpatrick,et al.  Algebraic structure of quasicyclic codes , 2001, Discret. Appl. Math..

[25]  Leonid P. Pryadko,et al.  Improved quantum hypergraph-product LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[26]  Alex R. Rigby,et al.  Modified belief propagation decoders for quantum low-density parity-check codes , 2019, Physical Review A.

[27]  Jeongwan Haah Local stabilizer codes in three dimensions without string logical operators , 2011, 1101.1962.

[28]  Hideki Imai,et al.  Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[29]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  Roxana Smarandache,et al.  Quasi-Cyclic LDPC Codes: Influence of Proto- and Tanner-Graph Structure on Minimum Hamming Distance Upper Bounds , 2009, IEEE Transactions on Information Theory.

[31]  Baoming Bai,et al.  Enhanced Feedback Iterative Decoding of Sparse Quantum Codes , 2009, IEEE Transactions on Information Theory.

[32]  Jeongwan Haah,et al.  Fiber bundle codes: breaking the n1/2 polylog(n) barrier for Quantum LDPC codes , 2020, STOC.

[33]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[34]  Nikolas P. Breuckmann,et al.  Balanced Product Quantum Codes , 2020, IEEE Transactions on Information Theory.

[35]  H. Bombin,et al.  Self-correcting quantum computers , 2009, 0907.5228.

[36]  Alex R. Rigby,et al.  Modified belief propagation decoders for quantum LDPC codes , 2019 .

[37]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[38]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[39]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[40]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[41]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[42]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[43]  Patrick Solé,et al.  On the Algebraic Structure of Quasi-cyclic Codes IV: Repeated Roots , 2006, Des. Codes Cryptogr..

[44]  David Declercq,et al.  Channel coding : theory, algorithms, and applications , 2014 .

[45]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[46]  Eugene Prange,et al.  The use of information sets in decoding cyclic codes , 1962, IRE Trans. Inf. Theory.

[47]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.