Solid-state carbon-13 NMR and computational characterization of the N719 ruthenium sensitizer adsorbed on TiO₂ nanoparticles.

The ruthenium-containing sensitizing dye N719 grafted on TiO2 nanoparticles was investigated by solid-state NMR. The carbon resonances are assigned by means of (13)C cross-polarized dipolar dephasing experiments. DFT calculations of the carbon magnetic shielding tensors accurately describe the changes in chemical shifts observed upon grafting onto a titania surface via one or two carboxylic functions in the plane defined by the two isothiocyanate groups.

[1]  T. Fujiwara,et al.  Characteristics of Water Adsorbed on TiO2 Photocatalytic Systems with Increasing Temperature as Studied by Solid-State 1H NMR Spectroscopy , 2004 .

[2]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[3]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[4]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[5]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[6]  H. Rensmo,et al.  Electronic and molecular surface structure of Ru(tcterpy)(NCS)3 and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2: a photoelectron spectroscopy study. , 2005, The journal of physical chemistry. B.

[7]  E. Longo,et al.  NMR study of styrene-butadiene rubber (SBR) and TiO2 nanocomposites , 2009 .

[8]  Valery Shklover,et al.  Structure of Organic/Inorganic Interface in Assembled Materials Comprising Molecular Components. Crystal Structure of the Sensitizer Bis[(4,4‘-carboxy-2,2‘-bipyridine)(thiocyanato)]ruthenium(II) , 1998 .

[9]  Tae-Joon Park,et al.  Characterization of Melanin-TiO 2 Complexes Using FT-IR and 13 C Solid-state NMR Spectroscopy , 2008 .

[10]  L. Kador,et al.  Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR spectroscopies. , 2006, The journal of physical chemistry. B.

[11]  E. R. Andrew,et al.  Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed , 1958, Nature.

[12]  S. Opella,et al.  Selection of nonprotonated carbon resonances in solid-state nuclear magnetic resonance , 1979 .

[13]  R. Ditchfield,et al.  Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility , 1972 .

[14]  Jacopo Tomasi,et al.  A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics , 1997 .

[15]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[16]  T. Tachikawa,et al.  Visible light-induced degradation of ethylene glycol on nitrogen-doped TiO2 powders. , 2006, The journal of physical chemistry. B.

[17]  M. Nazeeruddin,et al.  Structural Characterization of Solar Cell Prototypes Based on Nanocrystalline TiO2 Anatase Sensitized with Ru Complexes. X-ray Diffraction, XPS, and XAFS Spectroscopy Study , 2002 .

[18]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[19]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[20]  A. Hermann,et al.  Short range order at the amorphous TiO(2)-water interface probed by silicic acid adsorption and interfacial oligomerization: an ATR-IR and 29Si MAS-NMR study. , 2012, Journal of colloid and interface science.

[21]  E. R. Andrew,et al.  Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation , 1959, Nature.

[22]  A new sensitive organic/inorganic hybrid material based on titanium oxide for the potentiometric detection of iron(III). , 2012, Journal of colloid and interface science.

[23]  C. Thiel,et al.  Solid-state NMR and FT-IR investigation of 12-tungstophosphoric acid on TiO2 , 1998 .

[24]  F. Ziarelli,et al.  Oxygen atom transfer photocatalyzed by molybdenum(VI) dioxodibromo-(4,4′-dicarboxylate-2,2′-bipyridine) anchored on TiO2 , 2008 .

[25]  J. L. Woolfrey,et al.  Vibrational Spectroscopic Study of the Coordination of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes to the Surface of Nanocrystalline Titania , 1998 .

[26]  Y. Wada,et al.  Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell , 1995 .

[27]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[28]  Michael Grätzel,et al.  Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell , 2003 .

[29]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[30]  D. Raftery,et al.  15N Solid State NMR and EPR Characterization of N-Doped TiO2 Photocatalysts , 2007 .

[31]  Alexander Pines,et al.  Proton‐enhanced NMR of dilute spins in solids , 1973 .

[32]  H. F. Hameka,et al.  Calculation of Magnetic Shielding Constants of Diatomic Molecules. I. General Theory and Application to HF Molecule , 1966 .