Ef-Gaussian direct quadrature methods for Volterra integral equations with periodic solution

A direct quadrature method for the solution of Volterra integral equations with periodic solution is proposed. This method is based on an exponentially fitted quadrature rule of Gaussian type, whose parameters depend on the problem, in order to reproduce the behavior of the analytical solution. The error of the quadrature rule is examined and a convergence analysis of the direct quadrature method is given. Some numerical experiments are presented for comparison with other existing methods.

[1]  Beatrice Paternoster,et al.  Exponential fitting Direct Quadrature methods for Volterra integral equations , 2010, Numerical Algorithms.

[2]  Raffaele D'Ambrosio,et al.  Exponentially fitted two-step hybrid methods for y″=f(x, y) , 2011, J. Comput. Appl. Math..

[3]  Irwin W. Sandberg,et al.  Evaluation of the response of nonlinear systems to asymptotically almost periodic inputs , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[4]  Beatrice Paternoster,et al.  Two-step almost collocation methods for Volterra integral equations , 2008, Appl. Math. Comput..

[5]  Beatrice Paternoster,et al.  Multistep collocation methods for Volterra Integral Equations , 2009 .

[6]  H. Brunner,et al.  The numerical solution of Volterra equations , 1988 .

[7]  An algorithm with error bounds for calculating intermodulation products , 2000 .

[8]  L.Gr. Ixaru,et al.  Operations on oscillatory functions , 1997 .

[9]  T.B.M. Neill,et al.  Self-regulating Picard-type iteration for computing the periodic response of a nearly linear circuit to a periodic input , 1975 .

[11]  D. Conte,et al.  Two-step diagonally-implicit collocation based methods for Volterra Integral Equations , 2012 .

[12]  A parallel algorithm for large systems of Volterra integral equations of Abel type , 2008 .

[13]  Numerical-solution of volterra-equations based on mixed interpolation , 1994 .

[14]  Beatrice Paternoster,et al.  A Gauss quadrature rule for oscillatory integrands , 2001 .

[15]  Raffaele D'Ambrosio,et al.  Construction of the ef-based Runge-Kutta methods revisited , 2011, Comput. Phys. Commun..

[16]  Dajana Conte,et al.  Multistep collocation methods for Volterra integro-differential equations , 2013, Appl. Math. Comput..

[17]  I. W. Sandberg,et al.  The spectral coefficients of the response of nonlinear systems to asymptotically almost periodic inputs , 2001 .

[18]  M. Iannelli,et al.  Optimal Harvesting for Periodic Age-Dependent Population Dynamics , 1998, SIAM J. Appl. Math..

[19]  E. Messina,et al.  An adaptive method for Volterra-Fredholm integral equations on the half line , 2009 .

[20]  Angelamaria Cardone,et al.  A fast iterative method for discretized Volterra-Fredholm integral equations , 2006 .

[21]  Beatrice Paternoster,et al.  Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection , 2012, Appl. Math. Comput..

[22]  Beatrice Paternoster,et al.  Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday , 2012, Comput. Phys. Commun..

[23]  D. Frey,et al.  An integral equation approach to the periodic steady-state problem in nonlinear circuits , 1990 .

[24]  Generalized Dirichlet‐to‐Neumann Map in Time‐Dependent Domains , 2012 .

[25]  Beatrice Paternoster,et al.  Trigonometrically fitted two-step hybrid methods for special second order ordinary differential equations , 2011, Math. Comput. Simul..

[26]  H. De Meyer,et al.  Frequency determination and step-length control for exponentially-fitted Runge---Kutta methods , 2001 .

[27]  Hermann Brunner,et al.  On mixed collocation methods for Volterra integral equations with periodic solution , 1997 .