Tensor Networks in a Nutshell
暂无分享,去创建一个
[1] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[2] Kennedy,et al. Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.
[3] M. Fannes,et al. Finitely correlated states on quantum spin chains , 1992 .
[4] J. Baez,et al. Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.
[5] Barenco,et al. Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[6] Östlund,et al. Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.
[7] S. Rommer,et al. CLASS OF ANSATZ WAVE FUNCTIONS FOR ONE-DIMENSIONAL SPIN SYSTEMS AND THEIR RELATION TO THE DENSITY MATRIX RENORMALIZATION GROUP , 1997 .
[8] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[9] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[10] Julia Kempe,et al. Multiparticle entanglement and its applications to cryptography , 1999 .
[11] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[12] Yves Lafont,et al. Towards an algebraic theory of Boolean circuits , 2003 .
[13] F. Verstraete,et al. Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.
[14] G. Vidal,et al. Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.
[15] F. Verstraete,et al. Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.
[16] Peng Zhang,et al. Computational complexity of counting problems on 3-regular planar graphs , 2007, Theor. Comput. Sci..
[17] Frank Verstraete,et al. Matrix product state representations , 2006, Quantum Inf. Comput..
[18] G. Vidal. Entanglement renormalization. , 2005, Physical review letters.
[19] M. Hastings,et al. An area law for one-dimensional quantum systems , 2007, 0705.2024.
[20] F. Verstraete,et al. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.
[21] G. Vidal,et al. Simulation of time evolution with multiscale entanglement renormalization ansatz , 2008 .
[22] S Montangero,et al. Quantum multiscale entanglement renormalization ansatz channels. , 2008, Physical review letters.
[23] G. Vidal. Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.
[24] Subir Sachdev. Viewpoint: Tensor networks—a new tool for old problems , 2009 .
[25] M. Plenio,et al. Density matrix renormalization group in the Heisenberg picture. , 2008, Physical review letters.
[26] F. Verstraete,et al. Renormalization and tensor product states in spin chains and lattices , 2009, 0910.1130.
[27] Aaron D. Lauda,et al. A Prehistory of n-Categorical Physics DRAFT VERSION , 2009 .
[28] Jacob D. Biamonte,et al. Categorical Tensor Network States , 2010, ArXiv.
[29] J. Eisert,et al. Colloquium: Area laws for the entanglement entropy , 2010 .
[30] Guifre Vidal,et al. Entanglement Renormalization: An Introduction , 2009, 0912.1651.
[31] U. Schollwöck,et al. The density-matrix renormalization group: a short introduction , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[32] C. Foot,et al. Capturing long range correlations in two-dimensional quantum lattice systems using correlator product states , 2011, 1107.0936.
[33] Ville Bergholm,et al. Categorical quantum circuits , 2010, 1010.4840.
[34] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[35] G. Evenbly,et al. Tensor Network States and Geometry , 2011, 1106.1082.
[36] J. D. Biamonte,et al. Ground-state spin logic , 2012, 1205.1742.
[38] J. D. Biamonte,et al. Algebraically contractible topological tensor network states , 2011, 1108.0888.
[39] B. Swingle,et al. Entanglement Renormalization and Holography , 2009, 0905.1317.
[40] T. H. Johnson,et al. Solving search problems by strongly simulating quantum circuits , 2012, Scientific Reports.
[41] J. Eisert. Entanglement and tensor network states , 2013, 1308.3318.
[42] Marco Lanzagorta,et al. Tensor network methods for invariant theory , 2012, 1209.0631.
[43] Román Orús,et al. Advances on tensor network theory: symmetries, fermions, entanglement, and holography , 2014, 1407.6552.
[44] Andrew Critch,et al. Algebraic Geometry of Matrix Product States , 2012, 1210.2812.
[45] Jan Meijer,et al. High-fidelity spin entanglement using optimal control , 2013, Nature Communications.
[46] Jason Morton,et al. Tensor Network Contractions for #SAT , 2014, Journal of Statistical Physics.
[47] J. Molina-Vilaplana,et al. Entanglement, tensor networks and black hole horizons , 2014, 1403.5395.
[48] David G. Cory,et al. Tensor networks and graphical calculus for open quantum systems , 2011, Quantum Inf. Comput..
[49] Ning Bao,et al. Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence , 2015, 1504.06632.
[50] Andrzej Cichocki,et al. Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions , 2016, Found. Trends Mach. Learn..
[51] Christopher T. Chubb,et al. Hand-waving and interpretive dance: an introductory course on tensor networks , 2016, 1603.03039.
[52] Masashi Sugiyama,et al. Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives , 2017, Found. Trends Mach. Learn..
[53] Jacob Biamonte,et al. Charged string tensor networks , 2017, Proceedings of the National Academy of Sciences.