Tensor Networks in a Nutshell

Tensor network methods are taking a central role in modern quantum physics and beyond. They can provide an efficient approximation to certain classes of quantum states, and the associated graphical language makes it easy to describe and pictorially reason about quantum circuits, channels, protocols, open systems and more. Our goal is to explain tensor networks and some associated methods as quickly and as painlessly as possible. Beginning with the key definitions, the graphical tensor network language is presented through examples. We then provide an introduction to matrix product states. We conclude the tutorial with tensor contractions evaluating combinatorial counting problems. The first one counts the number of solutions for Boolean formulae, whereas the second is Penrose's tensor contraction algorithm, returning the number of $3$-edge-colorings of $3$-regular planar graphs.

[1]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[2]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[3]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[4]  J. Baez,et al.  Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.

[5]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[6]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[7]  S. Rommer,et al.  CLASS OF ANSATZ WAVE FUNCTIONS FOR ONE-DIMENSIONAL SPIN SYSTEMS AND THEIR RELATION TO THE DENSITY MATRIX RENORMALIZATION GROUP , 1997 .

[8]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[9]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[10]  Julia Kempe,et al.  Multiparticle entanglement and its applications to cryptography , 1999 .

[11]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[12]  Yves Lafont,et al.  Towards an algebraic theory of Boolean circuits , 2003 .

[13]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[14]  G. Vidal,et al.  Classical simulation of quantum many-body systems with a tree tensor network , 2005, quant-ph/0511070.

[15]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[16]  Peng Zhang,et al.  Computational complexity of counting problems on 3-regular planar graphs , 2007, Theor. Comput. Sci..

[17]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[18]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[19]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[20]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[21]  G. Vidal,et al.  Simulation of time evolution with multiscale entanglement renormalization ansatz , 2008 .

[22]  S Montangero,et al.  Quantum multiscale entanglement renormalization ansatz channels. , 2008, Physical review letters.

[23]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[24]  Subir Sachdev Viewpoint: Tensor networks—a new tool for old problems , 2009 .

[25]  M. Plenio,et al.  Density matrix renormalization group in the Heisenberg picture. , 2008, Physical review letters.

[26]  F. Verstraete,et al.  Renormalization and tensor product states in spin chains and lattices , 2009, 0910.1130.

[27]  Aaron D. Lauda,et al.  A Prehistory of n-Categorical Physics DRAFT VERSION , 2009 .

[28]  Jacob D. Biamonte,et al.  Categorical Tensor Network States , 2010, ArXiv.

[29]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[30]  Guifre Vidal,et al.  Entanglement Renormalization: An Introduction , 2009, 0912.1651.

[31]  U. Schollwöck,et al.  The density-matrix renormalization group: a short introduction , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  C. Foot,et al.  Capturing long range correlations in two-dimensional quantum lattice systems using correlator product states , 2011, 1107.0936.

[33]  Ville Bergholm,et al.  Categorical quantum circuits , 2010, 1010.4840.

[34]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[35]  G. Evenbly,et al.  Tensor Network States and Geometry , 2011, 1106.1082.

[36]  J. D. Biamonte,et al.  Ground-state spin logic , 2012, 1205.1742.

[38]  J. D. Biamonte,et al.  Algebraically contractible topological tensor network states , 2011, 1108.0888.

[39]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[40]  T. H. Johnson,et al.  Solving search problems by strongly simulating quantum circuits , 2012, Scientific Reports.

[41]  J. Eisert Entanglement and tensor network states , 2013, 1308.3318.

[42]  Marco Lanzagorta,et al.  Tensor network methods for invariant theory , 2012, 1209.0631.

[43]  Román Orús,et al.  Advances on tensor network theory: symmetries, fermions, entanglement, and holography , 2014, 1407.6552.

[44]  Andrew Critch,et al.  Algebraic Geometry of Matrix Product States , 2012, 1210.2812.

[45]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[46]  Jason Morton,et al.  Tensor Network Contractions for #SAT , 2014, Journal of Statistical Physics.

[47]  J. Molina-Vilaplana,et al.  Entanglement, tensor networks and black hole horizons , 2014, 1403.5395.

[48]  David G. Cory,et al.  Tensor networks and graphical calculus for open quantum systems , 2011, Quantum Inf. Comput..

[49]  Ning Bao,et al.  Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence , 2015, 1504.06632.

[50]  Andrzej Cichocki,et al.  Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions , 2016, Found. Trends Mach. Learn..

[51]  Christopher T. Chubb,et al.  Hand-waving and interpretive dance: an introductory course on tensor networks , 2016, 1603.03039.

[52]  Masashi Sugiyama,et al.  Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 2 Applications and Future Perspectives , 2017, Found. Trends Mach. Learn..

[53]  Jacob Biamonte,et al.  Charged string tensor networks , 2017, Proceedings of the National Academy of Sciences.