QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species

Key messageQTL mapping in F2population [V. luteola×V. marinasubsp.oblonga] revealed that the salt tolerance inV. marinasubsp.oblongais controlled by a single major QTL.AbstractThe habitats of beach cowpea (Vigna marina) are sandy beaches in tropical and subtropical regions. As a species that grows closest to the sea, it has potential to be a gene source for breeding salt-tolerant crops. We reported here for the first time, quantitative trait loci (QTLs) mapping for salt tolerance in V. marina. A genetic linkage map was constructed from an F2 population of 120 plants derived from an interspecific cross between V. luteola and V. marina subsp. oblonga. The map comprised 150 SSR markers. The markers were clustered into 11 linkage groups spanning 777.6 cM in length with a mean distance between the adjacent markers of 5.59 cM. The F2:3 population was evaluated for salt tolerance under hydroponic conditions at the seedling and developmental stages. Segregation analysis indicated that salt tolerance in V. marina is controlled by a few genes. Multiple interval mapping consistently identified one major QTL which can explain about 50 % of phenotypic variance. The flanking markers may facilitate transfer of the salt tolerance allele from V. marina subsp. oblonga into related Vigna crops. The QTL for domestication-related traits from V. marina are also discussed.

[1]  S. Tabata,et al.  Construction of a Genetic Linkage Map and Genetic Analysis of Domestication Related Traits in Mungbean (Vigna radiata) , 2012, PloS one.

[2]  G. Ye,et al.  A simple and efficient method for DNA extraction from grapevine cultivars andVitis species , 1994, Plant Molecular Biology Reporter.

[3]  M. Foolad Recent Advances in Genetics of Salt Tolerance in Tomato , 2004, Plant Cell, Tissue and Organ Culture.

[4]  P. Verslues,et al.  Mechanisms of salt tolerance in plants , 2006 .

[5]  C. Abdelly,et al.  QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula Recombinant Inbred Lines. , 2012, Genomics.

[6]  Norihiko Tomooka,et al.  The Genetics of Domestication of the Azuki Bean (Vigna angularis) , 2008, Genetics.

[7]  N. Tomooka,et al.  Molecular Markers in Vigna Improvement: Understanding and Using Gene Pools , 2004 .

[8]  N. K. Sen.,et al.  Cytotaxonomic studies on Vigna. , 1960 .

[9]  Somvong Tragoonrung,et al.  Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek) , 2009, BMC Plant Biology.

[10]  S. Samineni Physiology, genetics and QTL mapping of salt tolerance in chickpea (Cicer arietinum L.) , 2010 .

[11]  K. Edwards,et al.  Microsatellite repeats in common bean (Phaseolus vulgaris ): isolation, characterization, and cross-species amplification in Phaseolus ssp. , 2002 .

[12]  B. Verdcourt Studies in the Leguminosae-Papilionoideae for the 'Flora of Tropical East Africa': III , 1970 .

[13]  D. Pignone,et al.  Isozyme and RAPD Analysis of the Genetic Diversity Within and Between Vigna luteola and V. marina , 1997 .

[14]  T. Flowers,et al.  Salinity tolerance in halophytes. , 2008, The New phytologist.

[15]  A. D. Craig,et al.  The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview , 2005 .

[16]  M. Foolad,et al.  Crop breeding for salt tolerance in the era of molecular markers and marker‐assisted selection , 2013 .

[17]  Michael J. Kearsey,et al.  Genetical Analysis of Quantitative Traits , 2020 .

[18]  N. Tomooka,et al.  The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi] , 2004, Theoretical and Applied Genetics.

[19]  C. Kole Wild Crop Relatives: Genomic and Breeding Resources , 2011 .

[20]  J. Smartt The evolution of pulse crops , 1978, Economic Botany.

[21]  N. Tomooka,et al.  The genetics of domestication of rice bean, Vigna umbellata , 2010, Annals of botany.

[22]  Norihiko Tomooka,et al.  Genome Dissection of Traits Related to Domestication in Azuki Bean (Vigna angularis) and Comparison with other Warm-season Legumes , 2007, Annals of botany.

[23]  S. Adkins,et al.  An embryo-rescue protocol for Vigna interspecific hybrids , 2002 .

[24]  P. Gepts,et al.  Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). , 2000, The Journal of heredity.

[25]  T. Hirasawa,et al.  Genetic analysis of Myanmar Vigna species in responses to salt stress at the seedling stage , 2011 .

[26]  R. Munns,et al.  Mechanisms of salt tolerance in nonhalophytes. , 1980 .

[27]  A. Cottrell,et al.  Wild mungbean and its relatives in Australia , 1988 .

[28]  N. Tomooka,et al.  An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length. , 2012, Genome.

[29]  J. Micol,et al.  Genetic Architecture of NaCl Tolerance in Arabidopsis1 , 2002, Plant Physiology.

[30]  S. Sudheesh,et al.  SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.) , 2013, BMC Plant Biology.

[31]  Martin Farrall,et al.  The Genetical Analysis of Quantitative Traits , 1996 .

[32]  M. Blair,et al.  Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.) , 2003, Theoretical and Applied Genetics.

[33]  S. Lesch,et al.  Growth response of major U.S. cowpea cultivars. I. Biomass accumulation and salt tolerance , 2006 .

[34]  Roeland E. Voorrips,et al.  Software for the calculation of genetic linkage maps , 2001 .

[35]  M. Foolad Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping , 1999 .

[36]  Nigel Maxted,et al.  The Asian Vigna:: Genus Vigna subgenus Ceratotropis Genetic Resources , 2003 .

[37]  P. Somta,et al.  Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers , 2009, Conservation Genetics.

[38]  Z. Zeng,et al.  Multiple interval mapping for quantitative trait loci. , 1999, Genetics.

[39]  B. Verdcourt Studies in the Leguminosae-Papiliono'ideae for the 'Flora of Tropical East Africa': IV. , 1970 .

[40]  G. Scoles,et al.  Determining Genetic Similarities and Relationships among Cowpea Breeding Lines and Cultivars by Microsatellite Markers , 2001 .

[41]  N. Tomooka,et al.  The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. , 2012, Annals of botany.

[42]  K. Takeda,et al.  Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.) , 1997, Euphytica.

[43]  Shuangcheng Li,et al.  Effects of missing marker and segregation distortion on QTL mapping in F2 populations , 2010, Theoretical and Applied Genetics.

[44]  M. Hirai,et al.  An SSR-based linkage map of Capsicum annuum , 2006, Molecular Breeding.

[45]  Kao Zeng,et al.  Multiple Interval Mapping , .

[46]  T. Carter,et al.  A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars , 2004, Theoretical and Applied Genetics.

[47]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[48]  Zhao-Bang Zeng,et al.  Windows QTL Cartographer 2·5 , 2011 .

[49]  N. Tomooka,et al.  A genetic linkage map for azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi] , 2005, Theoretical and Applied Genetics.

[50]  T. Carter,et al.  A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars , 2004, Theoretical and Applied Genetics.

[51]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .

[52]  A. S. Ferreira,et al.  Morphological, physiological and biochemical responses during germination of the cowpea (Vigna unguiculata Cv. Pitiuba) seeds under salt stress. , 2009 .

[53]  Gwilym P. Lewis,et al.  Legumes of the World , 2000 .

[54]  A. P. de Souza,et al.  Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers? , 2005, Theoretical and Applied Genetics.

[55]  D. Xu,et al.  Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean , 2010, Theoretical and Applied Genetics.