Building Elliptic Curves Modulo Large Primes

Elliptic curves play an important role in many areas of modern cryptology such as integer factorization and primality proving. Moreover, they can be used in cryptosystems based on discrete logarithms for building one-way permutations. For the latter purpose, it is required to have cyclic elliptic curves over finite fields. The aim of this note is to explain how to construct such curves over a finite field of large prime cardinality, using the ECPP primality proving test of Atkin and Morain.

[1]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[2]  Françoise Morain Courbes elliptiques et tests de primalité , 1990 .

[3]  Victor S. Miller,et al.  Use of Elliptic Curves in Cryptography , 1985, CRYPTO.

[4]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[5]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1991, STOC '91.

[6]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[7]  R. Schoof Elliptic Curves Over Finite Fields and the Computation of Square Roots mod p , 1985 .

[8]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[9]  Joe Kilian,et al.  Almost all primes can be quickly certified , 1986, STOC '86.

[10]  J. L. Selfridge,et al.  Factorizations of b[n]±1, b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers , 1985 .

[11]  M. Deuring Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .

[12]  D. Chudnovsky,et al.  Sequences of numbers generated by addition in formal groups and new primality and factorization tests , 1986 .

[13]  Alfred Menezes,et al.  The Implementation of Elliptic Curve Cryptosystems , 1990, AUSCRYPT.

[14]  J. Cassels,et al.  Diophantine Equations with Special Reference To Elliptic Curves , 1966 .

[15]  Arjen K. Lenstra,et al.  Algorithms in Number Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[16]  Thomas Beth,et al.  Non Supersingular Elliptic Curves for Public Key Cryptosystems , 1991, EUROCRYPT.

[17]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[18]  C. Siegel,et al.  Über die Classenzahl quadratischer Zahlkörper , 1935 .

[19]  A. Atkin,et al.  ELLIPTIC CURVES AND PRIMALITY PROVING , 1993 .