A dynamic hierarchical subdivision algorithm for computing Delaunay triangulations and other closest-point problems

A new, dynamic, hierarchical subdivision and recursive algorithm for computing Delaunay triangulations is presented. The algorithm has four main steps: (1) location of the already formed triangle that contains the point (2) identification of other adjoining triangles whose circumcircle contains the point (3) formation of the new triangles, and (4) database update. Different search procedures are analyzed. It is shown that the “oriented walk” search, when the total number of points is less than 417 or when the points are presorted by distance or coordinates. The algorithm has point-deletion capabilities which are discussed in detail.

[1]  I. G. Gowda,et al.  Dynamic Voronoi diagrams , 1983, IEEE Trans. Inf. Theory.

[2]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[3]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[4]  Hiroshi Akima,et al.  A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points , 1978, TOMS.

[5]  W. G. Gray,et al.  Finite Element Simulation in Surface and Subsurface Hydrology , 1977 .

[6]  D. T. Lee,et al.  Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.

[7]  Scott W. Sloan,et al.  An implementation of Watson's algorithm for computing 2-dimensional delaunay triangulations , 1984 .

[8]  James J. Little,et al.  Automatic extraction of Irregular Network digital terrain models , 1979, SIGGRAPH.

[9]  Charles L. Lawson,et al.  $C^1$ surface interpolation for scattered data on a sphere , 1984 .

[10]  Niklaus Wirth,et al.  Algorithms + Data Structures = Programs , 1976 .

[11]  S. Sloan A fast algorithm for constructing Delaunay triangulations in the plane , 1987 .

[12]  B. N. Boots,et al.  The spatial arrangement of random Voronoi polygons , 1983 .

[13]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[14]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[15]  O. Palacios-Velez,et al.  Automated river-course, ridge and basin delineation from digital elevation data , 1986 .

[16]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[17]  Bruce W. Weide,et al.  Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.

[18]  Kazuo Murota,et al.  IMPROVEMENTS OF THE INCREMENTAL METHOD FOR THE VORONOI DIAGRAM WITH COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS , 1984 .

[19]  Robert J. Renka,et al.  Interpolation of data on the surface of a sphere , 1984, TOMS.

[20]  Volker Strassen,et al.  The Computational Complexity of Continued Fractions , 1983, SIAM J. Comput..

[21]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[22]  C. M. Gold,et al.  Automated contour mapping using triangular element data structures and an interpolant over each irregular triangular domain , 1977, SIGGRAPH '77.

[23]  T. M. Albert Geoscience data management , 1983 .

[24]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[25]  Neil E. Wiseman,et al.  On Making Graphic Arts Quality Output by Computer , 1978, Computer/law journal.

[26]  Robert J. Renka,et al.  A Storage-efficient Method for Construction of a Thiessen Triangulation , 1982 .