Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold.

[1]  H. Häkkinen,et al.  The gold-sulfur interface at the nanoscale. , 2012, Nature chemistry.

[2]  A. Erbe,et al.  Investigation of native oxide growth on zinc in different atmospheres by spectroscopic ellipsometry , 2012 .

[3]  C. Wöll,et al.  On the complexation kinetics for metallization of organic layers: palladium onto a pyridine-terminated araliphatic thiol film. , 2012, Physical chemistry chemical physics : PCCP.

[4]  Xiaojun Cai,et al.  Surface Barrier Properties of Self-Assembled Monolayers as Deduced by Sum Frequency Generation Spectroscopy and Electrochemistry , 2011 .

[5]  A. Terfort,et al.  Electrochemical investigations on stability and protonation behavior of pyridine-terminated aromatic self-assembled monolayers. , 2011, Physical chemistry chemical physics : PCCP.

[6]  M. Paddon-Row,et al.  Reversible potential-induced structural changes of alkanethiol monolayers on gold surfaces , 2011 .

[7]  Q. Chi,et al.  Electrochemically controlled self-assembled monolayers characterized with molecular and sub-molecular resolution. , 2011, Physical chemistry chemical physics : PCCP.

[8]  R. Schaub,et al.  Electrodeposition of palladium onto a pyridine-terminated self-assembled monolayer. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[9]  John Lekner,et al.  Theory of Reflection of Electromagnetic and Particle Waves , 2010 .

[10]  F. Decker,et al.  Copper protection by self-assembled monolayers of aromatic thiols in alkaline solutions. , 2010, Physical chemistry chemical physics : PCCP.

[11]  A. Terfort,et al.  A divergent synthesis of oligoarylalkanethiols with Lewis-basic N-donor termini. , 2010, Organic & biomolecular chemistry.

[12]  Caitlin Howell,et al.  Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy. , 2010, The Review of scientific instruments.

[13]  T. Ferri,et al.  Protein immobilization at gold–thiol surfaces and potential for biosensing , 2010, Analytical and bioanalytical chemistry.

[14]  O. Shekhah,et al.  Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold. , 2010, Physical chemistry chemical physics : PCCP.

[15]  S. Fletcher,et al.  Selective knockout of gold active sites. , 2010, Angewandte Chemie.

[16]  A. Bashir,et al.  A study on oxygen reduction inhibition at pyridine‐terminated self assembled monolayer modified Au(111) electrodes , 2010 .

[17]  A. T. Blumenau,et al.  The Role of Gold Adatoms in Self-Assembled Monolayers of Thiol on Au(111) , 2009 .

[18]  R. Advíncula,et al.  Electric Potential Stability and Ionic Permeability of SAMs on Gold Derived from Bidentate and Tridentate Chelating Alkanethiols , 2009 .

[19]  D. P. Woodruff The interface structure of n-alkylthiolate self-assembled monolayers on coinage metal surfaces. , 2008, Physical chemistry chemical physics : PCCP.

[20]  F. Villain,et al.  Sum-frequency generation as a vibrational and electronic probe of the electrochemical interface and thin films , 2008 .

[21]  Akira Yamakata,et al.  Hydrogen evolution reaction catalyzed by proton-coupled redox cycle of 4,4'-bipyridine monolayer adsorbed on silver electrodes. , 2008, Journal of the American Chemical Society.

[22]  I. Thom,et al.  On the Interpretation of Multiple Waves in Cyclic Voltammograms of Self-Assembled Monolayers of n-Alkane Thiols on Gold , 2008 .

[23]  Pablo G. Etchegoin,et al.  Erratum: “An analytic model for the optical properties of gold” [J. Chem. Phys. 125, 164705 (2006)] , 2007 .

[24]  T. Wandlowski,et al.  Structure and Electrochemical Characterization of 4-Methyl-4‘-(n-mercaptoalkyl)biphenyls on Au(111)-(1 × 1) , 2007 .

[25]  D. Dlott,et al.  Nonresonant Background Suppression in Broadband Vibrational Sum-Frequency Generation Spectroscopy , 2007 .

[26]  C. O’Sullivan,et al.  Microstructures by Selective Desorption of Self‐Assembled Monolayer from Polycrystalline Gold Electrodes , 2007 .

[27]  J. Dutcher,et al.  Measurement of the charge number per adsorbed molecule and packing densities of self-assembled long-chain monolayers of thiols. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[28]  S. Baldelli,et al.  Alkanethiol monolayers at reduced and oxidized zinc surfaces with corrosion protection: a sum frequency generation and electrochemistry investigation. , 2006, The journal of physical chemistry. B.

[29]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[30]  C. Wöll,et al.  Combined STM and FTIR characterization of terphenylalkanethiol monolayers on Au(111): effect of alkyl chain length and deposition temperature. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[31]  S. Baldelli,et al.  Preparation of alkanethiol monolayers on mild steel surfaces studied with sum frequency generation and electrochemistry. , 2005, The journal of physical chemistry. B.

[32]  K. Uosaki,et al.  In Situ dynamic monitoring of electrochemical oxidative adsorption and reductive desorption processes of a self-assembled monolayer of hexanethiol on a Au(111) surface in KOH ethanol solution by scanning tunneling microscopy. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[33]  I. Thom,et al.  Electrochemical stability of self-assembled monolayers of biphenyl based thiols studied by cyclic voltammetry and second harmonic generation , 2005 .

[34]  H. Boyen,et al.  A New Approach to the Electrochemical Metallization of Organic Monolayers: Palladium Deposition onto a 4,4′‐Dithiodipyridine Self‐Assembled Monolayer , 2004 .

[35]  T. Ohsaka,et al.  Fabrication of Au(111)-Like Polycrystalline Gold Electrodes and Their Applications to Oxygen Reduction , 2004 .

[36]  S. Satija,et al.  Electric field-driven transformations of a supported model biological membrane--an electrochemical and neutron reflectivity study. , 2004, Biophysical journal.

[37]  T. Ohsaka,et al.  Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates , 2003 .

[38]  S. Satija,et al.  Neutron reflectivity studies of field driven transformations in a monolayer of 4-pentadecyl pyridine at Au electrode surfaces , 2003 .

[39]  John R. Miller,et al.  Charge Transfer on the Nanoscale: Current Status , 2003 .

[40]  J. Justin Gooding,et al.  Self-Assembled Monolayers into the 21st Century: Recent Advances and Applications , 2003 .

[41]  K. Uosaki,et al.  A rotating gold ring–gold disk electrode study on electrochemical reductive desorption and oxidative readsorption of a self-assembled monolayer of dodecanethiol , 2002 .

[42]  H. Usui,et al.  Voltammetric Properties of the Reductive Desorption of Alkanethiol Self-Assembled Monolayers from a Metal Surface , 2002 .

[43]  M. Grunze,et al.  Odd–even effects in the cyclic voltammetry of self-assembled monolayers of biphenyl based thiols , 2002 .

[44]  K. Uosaki,et al.  In Situ, Real-Time Monitoring of the Reductive Desorption Process of Self-Assembled Monolayers of Hexanethiol on Au(111) Surfaces in Acidic and Alkaline Aqueous Solutions by Scanning Tunneling Microscopy , 2001 .

[45]  R. Salvarezza,et al.  Following transformation in self-assembled alkanethiol monolayers on Au(111) by in situ scanning tunneling microscopy , 2001 .

[46]  J. M. Sevilla,et al.  A voltammetric study of 6-mercaptopurine monolayers on polycrystalline gold electrodes , 2001 .

[47]  Jason D. Monnell,et al.  Conductance Switching in Single Molecules Through Conformational Changes , 2001, Science.

[48]  D. Hobara,et al.  Reconstruction of Au(111) Following the Reductive Desorption of Self-Assembled Monolayers of 2-Mercaptoethanesulfonic Acid Studied by in Situ Scanning Tunneling Microscopy , 2001 .

[49]  M. Morin,et al.  A Second Harmonic Generation Study of a Physisorbed Precursor to the Electrodeposition of a Monolayer of Alkanethiols , 2001 .

[50]  M. Esplandiu,et al.  Functionalized Self-Assembled Alkanethiol Monolayers on Au(111) Electrodes: 1. Surface Structure and Electrochemistry , 2001 .

[51]  David J. Schiffrin,et al.  A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups , 2000, Nature.

[52]  R. Lennox,et al.  Potential-Assisted Deposition of Alkanethiols on Au: Controlled Preparation of Single- and Mixed-Component SAMs , 2000 .

[53]  M. Porter,et al.  Origin of the multiple voltammetric desorption waves of long-chain alkanethiolate monolayers chemisorbed on annealed gold electrodes , 2000 .

[54]  A. Badı́a Asymptotic theory for the inverse problem in magnetic force microscopy of superconductors , 1999 .

[55]  M. Morin,et al.  FORMATION OF A SELF-ASSEMBLED MONOLAYER VIA THE ELECTROSPREADING OF PHYSISORBED MICELLES OF THIOLATES , 1999 .

[56]  M. Stratmann,et al.  Surface Modification by Ordered Monolayers: New Ways of Protecting Materials Against Corrosion , 1999 .

[57]  D. Hobara,et al.  In-Situ Scanning Tunneling Microscopy Imaging of the Reductive Desorption Process of Alkanethiols on Au(111) , 1998 .

[58]  M. Stratmann,et al.  Potential dependence of the kinetics of thiol self-organization on Au(111) , 1998 .

[59]  M. Morin,et al.  Chronoamperometric study of the reductive desorption of alkanethiol self-assembled monolayers , 1998 .

[60]  M. Newton,et al.  Rates of Interfacial Electron Transfer through π-Conjugated Spacers , 1997 .

[61]  M. Morin,et al.  Chronoamperometric study of the reduction of chemisorbed thiols on Au(111) , 1997 .

[62]  M. Morin,et al.  Vibrational Study of the Fast Reductive and the Slow Oxidative Desorptions of a Nonanethiol Self-Assembled Monolayer from a Au(111) Single Crystal Electrode , 1997 .

[63]  M. Morin,et al.  Studies of the Electrochemical Removal and Efficient Re-formation of a Monolayer of Hexadecanethiol Self-Assembled at an Au(111) Single Crystal in Aqueous Solutions , 1997 .

[64]  M. Morin,et al.  Electrochemical Desorption and Adsorption of Nonyl Mercaptan at Gold Single Crystal Electrode Surfaces , 1996 .

[65]  P. Krysiński,et al.  Partial electron transfer in octadecanethiol binding to gold , 1994 .

[66]  T. Schneider,et al.  Electrochemical quartz crystal microbalance studies of adsorption and desorption of self-assembled monolayers of alkyl thiols on gold , 1993 .

[67]  M. Porter,et al.  The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes , 1991 .

[68]  H. S. Wilgus,et al.  Inductive Effects on the Acid Dissociation Constants of Mercaptans1 , 1960 .

[69]  A. Erbe,et al.  In-situ spectroscopic ellipsometry during electrochemical treatment of zinc in alkaline carbonate electrolyte , 2013 .

[70]  A. Erbe,et al.  Third-order effects in resonant sum-frequency-generation signals at electrified metal/liquid interfaces. , 2013, Journal of the Optical Society of America. B, Optical physics.

[71]  K. Uosaki,et al.  Fabrication of photochemical pattern on a self-assembled monolayer (SAM) of a ruthenium cluster under electrochemical control , 2009 .

[72]  J. Mathiyarasu,et al.  REVIEW ON CORROSION PREVENTION OF COPPER USING ULTRATHIN ORGANIC MONOLAYERS , 2006 .

[73]  V. Macagno,et al.  Electrochemical STM investigation of 1,8-octanedithiol monolayers on Au(1 1 1).: Experimental and theoretical study , 2006 .

[74]  A. Khanna,et al.  SOL GEL DERIVED ORGANIC-INORGANIC HYBRID COATING: A NEW ERA IN CORROSION PROTECTION OF MATERIAL , 2006 .

[75]  N. K. Chaki,et al.  Self-assembled monolayers as a tunable platform for biosensor applications. , 2002, Biosensors & bioelectronics.

[76]  J. Israelachvili Intermolecular and surface forces , 1985 .

[77]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .

[78]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .