A Probabilistic Bulk Model of Coupled Mixed Layer and Convection. Part II: Shallow Convection Case

The probabilistic bulk convection model (PBCM) developed in a companion paper is here extended to shallow nonprecipitating convection. The PBCM unifies the clear-sky and shallow convection boundary layer regimes by obtaining mixed-layer growth, cloud fraction, and convective inhibition from a single parameterization based on physical principles. The evolution of the shallow convection PBCM is based on the statistical distribution of the surface thermodynamic state of convective plumes. The entrainment velocity of the mixed layer is related to the mass flux of the updrafts overshooting the dry inversion capping the mixed layer. The updrafts overcoming the convective inhibition generate active cloudbase mass flux, which is the boundary condition for the shallow cumulus scheme. The subcloud-layer entrainment velocity is directly coupled to the cloud-base mass flux through the distribution of vertical velocity and fractional cover of the updrafts. Comparisons of the PBCM against large-eddy simulations from the Barbados Oceanographic and MeteorologicalExperiment (BOMEX) andfromthe SouthernGreat PlainsAtmospheric RadiationMeasurement Program (ARM) facility demonstrate good agreement in terms of thermodynamic structure, cloud-base mass flux, and cloud top. The equilibrium between the cloud-base mass flux and rate of growth of the mixed layer determines the equilibrium convective inhibition and cloud cover. This process is an important new insight on the coupling between the mixed-layer and cumulus dynamics. Given its relative simplicity and transparency, the PBCM represents a powerful tool for developing process-based understanding and intuition about the physical processes involved in boundary layer–convection interactions, as well as a test bed for diagnosing and validating shallow convection parameterizations.

[1]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[2]  A. Betts,et al.  Model of the Thermodynamic Structure of the Trade-Wind Boundary Layer: Part I. Theoretical Formulation and Sensitivity Tests. , 1979 .

[3]  A. Pier Siebesma,et al.  A Simple Parameterization for Detrainment in Shallow Cumulus , 2006 .

[4]  Alan K. Betts,et al.  Parametric Interpretation of Trade-Wind Cumulus Budget Studies , 1975 .

[5]  S. Cheinet A Multiple Mass-Flux Parameterization for the Surface-Generated Convection. Part I: Dry Plumes , 2003 .

[6]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[7]  B. Albrecht A model study of downstream variations of the thermodynamic structure of the trade winds , 1984 .

[8]  Vincent E. Larson,et al.  A PDF-Based Model for Boundary Layer Clouds. Part II: Model Results , 2002 .

[9]  A. Betts Non‐precipitating cumulus convection and its parameterization , 1973 .

[10]  Kerry Emanuel,et al.  A Parameterization of the Cloudiness Associated with Cumulus Convection; Evaluation Using TOGA COARE Data , 2001 .

[11]  C. Bretherton,et al.  A New Moist Turbulence Parameterization in the Community Atmosphere Model , 2009 .

[12]  Shepard A. Clough,et al.  The ARM program's water vapor intensive observation periods - Overview, initial accomplishments, and future challenges , 2003 .

[13]  Andrew J. Majda,et al.  Stochastic models for convective momentum transport , 2008, Proceedings of the National Academy of Sciences.

[14]  Roland B. Stull,et al.  A Fair-Weather Cumulus Cloud Classification Scheme for Mixed-Layer Studies , 1985 .

[15]  Albert A. M. Holtslag,et al.  Flux Parameterization over Land Surfaces for Atmospheric Models , 1991 .

[16]  C. Bretherton,et al.  A New Bulk Shallow-Cumulus Model and Implications for Penetrative Entrainment Feedback on Updraft Buoyancy , 2008 .

[17]  A. P. Siebesma,et al.  A New Subcloud Model for Mass-Flux Convection Schemes: Influence on Triggering, Updraft Properties, and Model Climate , 2003 .

[18]  A. P. Siebesma,et al.  A Combined Eddy-Diffusivity Mass-Flux Approach for the Convective Boundary Layer , 2007 .

[19]  B. van den Hurk,et al.  On The Temperature-Humidity Correlation And Similarity , 1999 .

[20]  A. Betts Mixing Line Analysis of Clouds and Cloudy Boundary Layers , 1985 .

[21]  S. Klein,et al.  The Seasonal Cycle of Low Stratiform Clouds , 1993 .

[22]  A. Betts A new convective adjustment scheme. Part I: Observational and theoretical basis , 1986 .

[23]  A. P. Siebesma,et al.  Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications , 2010 .

[24]  M. Köhler,et al.  A Dual Mass Flux Framework for Boundary Layer Convection. Part I: Transport , 2009 .

[25]  A. Donohoe,et al.  What Determines Meridional Heat Transport in Climate Models , 2012 .

[26]  R. Stull,et al.  Parameterization of Joint Frequency Distributions of Potential Temperature and Water-Vapor Mixing Ratio in the Daytime Convective Boundary Layer , 2004 .

[27]  Frédéric Baup,et al.  Surface thermodynamics and radiative budget in the Sahelian Gourma: Seasonal and diurnal cycles , 2009 .

[28]  Vincent E. Larson,et al.  A PDF-Based Model for Boundary Layer Clouds. Part I: Method and Model Description , 2002 .

[29]  Christopher S. Bretherton,et al.  A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results , 2004 .

[30]  C. Bretherton,et al.  A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part II: Regional Simulations of Marine Boundary Layer Clouds , 2004 .

[31]  A. P. Siebesma,et al.  A Large Eddy Simulation Intercomparison Study of Shallow Cumulus Convection , 2003 .

[32]  Jean-Christophe Golaz,et al.  Large‐eddy simulation of the diurnal cycle of shallow cumulus convection over land , 2002 .

[33]  A. Pier Siebesma,et al.  Entrainment and detrainment in cumulus convection: an overview , 2013 .

[34]  S. Cheinet A Multiple Mass Flux Parameterization for the Surface-Generated Convection. Part II: Cloudy Cores , 2004 .

[35]  B. Stevens,et al.  On Bulk Models of Shallow Cumulus Convection , 2005 .

[36]  B. Stevens Bulk boundary-layer concepts for simplified models of tropical dynamics , 2006 .

[37]  A. Betts,et al.  Residual Erros of the VIZ Radiosonde Hygristor as Deduced from Observations of Sub-Cloud Layer Structure , 1974 .

[38]  Martin Köhler,et al.  Modelling the diurnal cycle of deep precipitating convection over land with cloud‐resolving models and single‐column models , 2004 .

[39]  Andrew J. Majda,et al.  A stochastic multicloud model for tropical convection , 2010 .

[40]  B. Albrecht,et al.  A theoretical and observational analysis on the formation of fair-weather cumuli , 2002 .

[41]  Dmitrii Mironov,et al.  Convective Entrainment into a Shear-Free, Linearly Stratified Atmosphere: Bulk Models Reevaluated through Large Eddy Simulations , 2004 .

[42]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[43]  A. Blyth,et al.  A Stochastic Mixing Model for Nonprecipitating Cumulus Clouds , 1986 .

[44]  S. Bony,et al.  How Well Do We Understand and Evaluate Climate Change Feedback Processes , 2006 .

[45]  João Paulo Teixeira,et al.  An eddy‐diffusivity/mass‐flux parametrization for dry and shallow cumulus convection , 2004 .

[46]  A. Betts,et al.  Climatic Equilibrium of the Atmospheric Convective Boundary Layer over a Tropical Ocean , 1989 .

[47]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[48]  Joanne Simpson,et al.  MODELS OF PRECIPITATING CUMULUS TOWERS , 1969 .

[49]  A. Betts,et al.  A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets , 1986 .

[50]  K. Salzen,et al.  Parameterization of the Bulk Effects of Lateral and Cloud-Top Entrainment in Transient Shallow Cumulus Clouds , 2002 .

[51]  Alan K. Betts,et al.  A new convective adjustment scheme , 1985 .

[52]  P. Bechtold,et al.  Organization and Representation of Boundary Layer Clouds , 1998 .

[53]  Andrew J. Majda,et al.  A Simple Multicloud Parameterization for Convectively Coupled Tropical Waves. Part I: Linear Analysis , 2006 .

[54]  Pierre Gentine,et al.  A Probabilistic Bulk Model of Coupled Mixed Layer and Convection. Part I: Clear-Sky Case , 2013 .

[55]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[56]  K. Emanuel A Scheme for Representing Cumulus Convection in Large-Scale Models , 1991 .

[57]  A. A new convective adjustment scheme. Part I: Observational and theoretical basis , 2006 .

[58]  R. Simpson,et al.  Experimental cumulus dynamics. , 1965 .

[59]  R. Neggers A Dual Mass Flux Framework for Boundary Layer Convection. Part II: Clouds , 2009 .

[60]  K. Findell,et al.  An Idealized Prototype for Large-Scale Land-Atmosphere Coupling , 2013 .