Simple test for hidden variables in spin-1 systems.

We resolve an old problem about the existence of hidden parameters in a three-dimensional quantum system by constructing an appropriate Bell's type inequality. This reveals the nonclassical nature of most spin-1 states. We shortly discuss some physical implications and an underlying cause of this nonclassical behavior, as well as a perspective of its experimental verification.

[1]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[2]  Weinfurter,et al.  Experiments towards falsification of noncontextual hidden variable theories , 2000, Physical review letters.

[3]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  E. Knill,et al.  Generalizations of entanglement based on coherent states and convex sets , 2002, quant-ph/0207149.

[6]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[7]  Ettore Majorana Atomi orientati in campo magnetico variabile , 1932 .

[8]  N. N. Vorob’ev Consistent Families of Measures and Their Extensions , 1962 .

[9]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[10]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[11]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[12]  Somshubhro Bandyopadhyay,et al.  Bell's inequality for a single spin-1/2 particle and quantum contextuality , 2001 .

[13]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[14]  S P Kulik,et al.  Qutrit state engineering with biphotons. , 2004, Physical review letters.

[15]  M. Ali Can,et al.  Single-particle entanglement , 2004 .

[16]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  Gleb Maslennikov,et al.  Preparation of biphotons in arbitrary polarization states , 2005 .

[20]  K J Resch,et al.  Manipulating biphotonic qutrits. , 2007, Physical review letters.

[21]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[22]  M. Genovese Research on hidden variable theories: A review of recent progresses , 2005, quant-ph/0701071.

[23]  R. Loidl,et al.  Violation of a Bell-like inequality in single-neutron interferometry , 2003, Nature.

[24]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[25]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[26]  H. Kellerer Verteilungsfunktionen mit gegebenen Marginalverteilungen , 1964 .

[27]  S. P. Kulik,et al.  Orthogonality of biphoton polarization states , 2004 .