Phase-coded pulse aperiodic transmitter coding

Both ionospheric and weather radar communities have already adopted the method of transmitting radar pulses in an aperiodic manner when measuring moderately over- spread targets. Among the users of the ionospheric radars, this method is called Aperiodic Transmitter Coding (ATC), whereas the weather radar users have adopted the term Si- multaneous Multiple Pulse-Repetition Frequency (SMPRF). When probing the ionosphere at the carrier frequencies of the EISCAT Incoherent Scatter Radar facilities, the range extent of the detectable target is typically of the order of one thou- sand kilometers - about seven milliseconds - whereas the characteristic correlation time of the scattered signal varies from a few milliseconds in the D-region to only tens of mi- croseconds in the F-region. If one is interested in estimat- ing the scattering autocorrelation function (ACF) at time lags shorter than the F-region correlation time, the D-region must be considered as a moderately overspread target, whereas the F-region is a severely overspread one. Given the technical restrictions of the radar hardware, a combination of ATC and phase-coded long pulses is advantageous for this kind of target. We evaluate such an experiment under infinitely low signal-to-noise ratio (SNR) conditions using lag profile inversion. In addition, a qualitative evaluation under high- SNR conditions is performed by analysing simulated data. The results show that an acceptable estimation accuracy and a very good lag resolution in the D-region can be achieved with a pulse length long enough for simultaneous E- and F- region measurements with a reasonable lag extent. The new experiment design is tested with the EISCAT Tromso VHF (224 MHz) radar. An example of a full D/E/F-region ACF from the test run is shown at the end of the paper.

[2]  David L. Hysell,et al.  Improved spectral estimation of equatorial spread F through aperiodic pulsing and Bayesian inversion , 2008 .

[3]  Michael P. Sulzer,et al.  Recent incoherent scatter techniques , 1989 .

[5]  Asko Huuskonen,et al.  Randomization of alternating codes: Improving incoherent scatter measurements by reducing correlations of gated autocorrelation function estimates , 1997 .

[6]  John D. Sahr,et al.  Aperiodic transmitter waveforms for spectrum estimation of moderately overspread targets: new codes and a design rule , 1996, IEEE Trans. Geosci. Remote. Sens..

[7]  M. S. Lehtinen,et al.  The accuracy of incoherent scatter measurements: error estimates valid for high signal levels , 1996 .

[8]  T. Nygrén,et al.  Alternating-coded multipulse codes for incoherent scatter experiments , 1996 .

[9]  David L. Hysell,et al.  Improved spectral observations of equatorial spread F echoes at Jicamarca using aperiodic transmitter coding , 2004 .

[10]  Pr Mahapatra,et al.  Measuring Space Debris with Phase Coded Aperiodic Transmission Sequence , 2009 .

[11]  John D. Sahr,et al.  Spectrum estimation of moderately overspread radar targets using aperiodic transmitter coding , 1994 .

[12]  D. Schleher Mti and Pulsed Doppler Radar , 1999 .

[13]  Ilkka Virtanen,et al.  Towards multi-purpose IS radar experiments , 2008 .

[14]  J. Chau,et al.  Interpreting the Doppler spectrum of coherent scatter from topside equatorial spread F , 2004 .

[15]  D. T. Farley Incoherent Scatter Correlation Function Measurements , 1969 .

[16]  Michael P. Sulzer,et al.  A radar technique for high range resolution incoherent scatter autocorrelation function measurements utilizing the full average power of klystron radars , 1986 .

[17]  B. Damtie,et al.  High resolution observations of sporadic-E layers within the polar cap ionosphere using a new incoherent scatter radar experiment , 2002 .

[18]  Juha Vierinen,et al.  Transmission code optimization method for incoherent scatter radar , 2008 .

[19]  William D. Clinger,et al.  On Unequally Spaced Time Points in Time Series , 1976 .

[20]  F. Kamalabadi,et al.  An efficient near‐optimal approach to incoherent scatter radar parameter estimation , 2008 .

[21]  Markku Lehtinen,et al.  On optimization of incoherent scatter measurements , 1989 .

[22]  Asko Huuskonen,et al.  A Proposed Solution to the Range–Doppler Dilemma of Weather Radar Measurements by Using the SMPRF Codes, Practical Results, and a Comparison with Operational Measurements , 2005 .

[23]  Ilkka Virtanen,et al.  Lag profile inversion method for EISCAT data analysis , 2008 .

[24]  D. T. Farley Multiple‐Pulse Incoherent‐Scatter Correlation Function Measurements , 1972 .

[25]  Asko Huuskonen,et al.  First experiences of full-profile analysis with GUISDAP , 1996 .

[26]  Michael P. Sulzer,et al.  A phase modulation technique for a sevenfold statistical improvement in incoherent scatter data-taking , 1986 .

[27]  M. Nicolls,et al.  Inferring D region parameters using improved incoherent scatter radar techniques at Arecibo , 2008 .

[28]  Ingemar Häggström,et al.  A new modulation principle for incoherent scatter measurements , 1987 .

[29]  Michael P. Sulzer A new type of alternating code for incoherent scatter measurements , 1993 .

[30]  Markku Lehtinen,et al.  Fortran linear inverse problem solver , 2010 .

[31]  Ilkka Virtanen,et al.  Fast comparison of IS radar code sequences for lag profile inversion , 2008 .

[32]  F. Rodrigues,et al.  Full profile incoherent scatter analysis at Jicamarca , 2008 .