Multiple antenna transmitter and receiver architectures that combine antenna selection with RF pre-processing have been shown to significantly outperform conventional antenna selection with the same number of RF chains. Often, performance close to a full complexity architecture (with more RF chains) is also achieved. This work studies the effect of hardware and signal processing non-idealities on such architectures. We show that they are robust to quantization, phase, and calibration errors introduced by RF phase-shifters, and also to the channel estimation errors. While insertion loss does lead to performance degradation, performance better than conventional antenna selection is observed for typical insertion loss values.