Improving Structural Order for a High‐Performance Diketopyrrolopyrrole‐Based Polymer Solar Cell with a Thick Active Layer

A series of low‐bandgap polymers based on thienyl benzodithiophene (BDTT) and furan‐substituted diketopyrrolopyrrole (FDPP) units with different side chains are presented. By replacing the branched ethylhexyl group on the FDPP unit with linear side chains, the structural order and carrier mobility of the modified polymers are enhanced accordingly. The power conversion efficiencies (PCE) of single‐junction devices based on polymers of this series are improved from ≈5% to ≈7%. More importantly, devices made from the modified polymers show excellent photovoltaic performance with a thick active layer of up to 360 nm, a very promising characteristic for the industrial implementation of polymer solar cell devices.

[1]  Gang Li,et al.  High-performance semi-transparent polymer solar cells possessing tandem structures , 2013 .

[2]  Wei Chen,et al.  Synthesis and Photovoltaic Effect in Dithieno[2,3‐d:2′,3′‐d′]Benzo[1,2‐b:4,5‐b′]dithiophene‐Based Conjugated Polymers , 2013, Advanced materials.

[3]  Yang Yang,et al.  A Selenium‐Substituted Low‐Bandgap Polymer with Versatile Photovoltaic Applications , 2013, Advanced materials.

[4]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[5]  A. Jen,et al.  Improved Charge Transport and Absorption Coefficient in Indacenodithieno[3,2‐b]thiophene‐based Ladder‐Type Polymer Leading to Highly Efficient Polymer Solar Cells , 2012, Advanced materials.

[6]  Luping Yu,et al.  Metal Oxide Nanoparticles as an Electron‐Transport Layer in High‐Performance and Stable Inverted Polymer Solar Cells , 2012, Advanced materials.

[7]  Sean E. Shaheen,et al.  Pathways to a New Efficiency Regime for Organic Solar Cells , 2012 .

[8]  Yongsheng Chen,et al.  Small molecules based on benzo[1,2-b:4,5-b']dithiophene unit for high-performance solution-processed organic solar cells. , 2012, Journal of the American Chemical Society.

[9]  Gang Li,et al.  Visibly transparent polymer solar cells produced by solution processing. , 2012, ACS nano.

[10]  Yang Yang,et al.  Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. , 2012, Journal of the American Chemical Society.

[11]  M. Wienk,et al.  Solution Processed Polymer Tandem Solar Cell Using Efficient Small and Wide bandgap Polymer:Fullerene Blends , 2012, Advanced materials.

[12]  H. Sirringhaus,et al.  A Selenophene‐Based Low‐Bandgap Donor–Acceptor Polymer Leading to Fast Ambipolar Logic , 2012, Advanced materials.

[13]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[14]  Yongfang Li Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. , 2012, Accounts of chemical research.

[15]  M. Toney,et al.  Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. , 2012, Journal of the American Chemical Society.

[16]  W. You,et al.  Rational Design of High Performance Conjugated Polymers for Organic Solar Cells , 2012 .

[17]  Martin A. Green,et al.  Solar cell efficiency tables (version 39) , 2012 .

[18]  J. Fréchet,et al.  Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. , 2011, Journal of the American Chemical Society.

[19]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[20]  Feng Xu,et al.  Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. , 2011, Angewandte Chemie.

[21]  Wei Chen,et al.  Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. , 2011, Nano letters.

[22]  U. Jeng,et al.  Improving Device Efficiency of Polymer/Fullerene Bulk Heterojunction Solar Cells Through Enhanced Crystallinity and Reduced Grain Boundaries Induced by Solvent Additives , 2011, Advanced materials.

[23]  Tao Wang,et al.  The Nanoscale Morphology of a PCDTBT:PCBM Photovoltaic Blend , 2011 .

[24]  Donghoon Choi,et al.  2,5-Bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4-(2H,5H)-dione-based donor-acceptor alternating copolymer bearing 5,5'-di(thiophen-2-yl)-2,2'-biselenophene exhibiting 1.5 cm2·V(-1)·s(-1) hole mobility in thin-film transistors. , 2011, Journal of the American Chemical Society.

[25]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[26]  W. Li,et al.  Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. , 2011, Journal of the American Chemical Society.

[27]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[28]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[29]  Mario Leclerc,et al.  Processable Low-Bandgap Polymers for Photovoltaic Applications† , 2011 .

[30]  Luping Yu,et al.  When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance , 2010, Advanced materials.

[31]  Zhenan Bao,et al.  Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends , 2010 .

[32]  Claire H. Woo,et al.  Incorporation of furan into low band-gap polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[33]  D. D. de Leeuw,et al.  Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer , 2010, Advanced materials.

[34]  Shinuk Cho,et al.  Effect of processing additive on the nanomorphology of a bulk heterojunction material. , 2010, Nano letters.

[35]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[36]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[37]  Alex K.-Y. Jen,et al.  Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione , 2010 .

[38]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[39]  Guillermo C. Bazan,et al.  Improved Performance of Polymer Bulk Heterojunction Solar Cells Through the Reduction of Phase Separation via Solvent Additives , 2010, Advanced materials.

[40]  Luping Yu,et al.  Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell. , 2010, The journal of physical chemistry. B.

[41]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[42]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[43]  Guillermo C Bazan,et al.  Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. , 2009, Nature chemistry.

[44]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[45]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[46]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[47]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[48]  Luping Yu,et al.  Development of new semiconducting polymers for high performance solar cells. , 2009, Journal of the American Chemical Society.

[49]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[50]  Mm Martijn Wienk,et al.  Narrow‐Bandgap Diketo‐Pyrrolo‐Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance , 2008 .

[51]  Keng S. Liang,et al.  Simultaneous Use of Small‐ and Wide‐Angle X‐ray Techniques to Analyze Nanometerscale Phase Separation in Polymer Heterojunction Solar Cells , 2008 .

[52]  Fang‐Chung Chen,et al.  Solvent mixtures for improving device efficiency of polymer photovoltaic devices , 2008 .

[53]  Gang Li,et al.  Control of the nanoscale crystallinity and phase separation in polymer solar cells , 2008 .

[54]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[55]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[56]  Gang Li,et al.  “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3‐hexylthiophene) and Methanofullerenes , 2007 .

[57]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[58]  Klaus Meerholz,et al.  The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells , 2006 .

[59]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[60]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[61]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[62]  N. S. Sariciftci,et al.  Charge transport and recombination in bulk heterojunction solar cells studied by the photoinduced charge extraction in linearly increasing voltage technique , 2005 .

[63]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[64]  Wen-li Wu,et al.  Chain conformation in ultrathin polymer films , 1999, Nature.

[65]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.