Uncertainty principle for multivector-valued functions

The idea of multiplexing motivates us to develop the theory on the Fourier transform (FT) of multivector-valued functions. In this paper, in the framework of Clifford analysis, we establish a Heisenberg–Pauli–Weyl type uncertainty principle for the FT of multivector-valued functions.

[1]  Fred Brackx,et al.  The Clifford-Fourier Transform , 2005 .

[2]  Eckhard Hitzer,et al.  Clifford Fourier Transform on Multivector Fields and Uncertainty Principles for Dimensions n = 2 (mod 4) and n = 3 (mod 4) , 2008 .

[3]  L. D. Abreu Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions , 2009, 0901.4386.

[4]  L. D. Abreu On the structure of Gabor and super Gabor spaces , 2010 .

[5]  Fred Brackx,et al.  The Two-Dimensional Clifford-Fourier Transform , 2006, Journal of Mathematical Imaging and Vision.

[6]  Rémi Vaillancourt,et al.  Windowed Fourier transform of two-dimensional quaternionic signals , 2010, Appl. Math. Comput..

[7]  Yurii Lyubarskii,et al.  Gabor (super)frames with Hermite functions , 2008, 0804.4613.

[8]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[9]  M. Bahri,et al.  Real clifford windowed Fourier transform , 2011 .

[10]  Yurii Lyubarskii,et al.  Gabor frames with Hermite functions , 2007 .

[11]  H. Führ Simultaneous estimates for vector-valued Gabor frames of Hermite functions , 2008, Adv. Comput. Math..

[12]  Eckhard Hitzer,et al.  Clifford Fourier Transformation and Uncertainty Principle for the Clifford Geometric Algebra Cl3,0 , 2006 .

[13]  Radu Balan Multiplexing of signals using superframes , 2000, SPIE Optics + Photonics.

[14]  Gerik Scheuermann,et al.  Clifford Fourier transform on vector fields , 2005, IEEE Transactions on Visualization and Computer Graphics.

[15]  Mawardi Bahri,et al.  Two-Dimensional Clifford Windowed Fourier Transform , 2013, Geometric Algebra Computing.