Functional implications of Neandertal introgression in modern humans

[1]  J. Akey,et al.  Archaic Hominin Admixture Facilitated Adaptation to Out-of-Africa Environments , 2016, Current Biology.

[2]  J. Kelso,et al.  Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human Populations , 2016, Cell.

[3]  Zachary A. Szpiech,et al.  Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens , 2016, Cell.

[4]  Philipp W. Messer,et al.  Adaptively introgressed Neandertal haplotype at the OAS locus functionally impacts innate immune responses in humans , 2016, bioRxiv.

[5]  Fernando Racimo,et al.  Signatures of Archaic Adaptive Introgression in Present-Day Human Populations , 2016, bioRxiv.

[6]  D. Reich,et al.  The genetic history of Ice Age Europe , 2016, Nature.

[7]  Fernando Racimo,et al.  The landscape of uniquely shared archaic alleles in present-day human populations , 2016 .

[8]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, bioRxiv.

[9]  Gerard Tromp,et al.  The phenotypic legacy of admixture between modern humans and Neandertals , 2016, Science.

[10]  J. Casanova,et al.  Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes. , 2016, American journal of human genetics.

[11]  A. Andrés,et al.  Introgression of Neandertal- and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors , 2016, American journal of human genetics.

[12]  Liran Carmel,et al.  Archaic Adaptive Introgression in TBX15/WARS2 , 2015, bioRxiv.

[13]  D. Reich,et al.  Genome-wide patterns of selection in 230 ancient Eurasians , 2015, Nature.

[14]  R. Nielsen,et al.  The Genetic Cost of Neanderthal Introgression , 2015, Genetics.

[15]  G. Coop,et al.  The Strength of Selection against Neanderthal Introgression , 2015, bioRxiv.

[16]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[17]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[18]  N. Jetté,et al.  The prevalence of Parkinson's disease: A systematic review and meta‐analysis , 2014, Movement disorders : official journal of the Movement Disorder Society.

[19]  Asan,et al.  Altitude adaptation in Tibet caused by introgression of Denisovan-like DNA , 2014, Nature.

[20]  Mikhail S. Gelfand,et al.  Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans , 2014, Nature Communications.

[21]  Philip L. F. Johnson,et al.  The complete genome sequence of a Neandertal from the Altai Mountains , 2013, Nature.

[22]  Thomas W. Mühleisen,et al.  Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. , 2013, Blood.

[23]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[24]  Torsten Witte,et al.  A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. , 2013, Human molecular genetics.

[25]  Chuong B. Do,et al.  A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci , 2013, Nature Genetics.

[26]  J. Haines,et al.  Parkinson disease loci in the mid-western Amish , 2013, Human Genetics.

[27]  M. Peters,et al.  Identification of genetic loci associated with Helicobacter pylori serologic status. , 2013, JAMA.

[28]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[29]  M. Hammer,et al.  Neandertal origin of genetic variation at the cluster of OAS immunity genes. , 2013, Molecular biology and evolution.

[30]  P. Sham,et al.  Meta-analysis followed by replication identifies loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with systemic lupus erythematosus in Asians. , 2013, American journal of human genetics.

[31]  Christian Gieger,et al.  Seventy-five genetic loci influencing the human red blood cell , 2012, Nature.

[32]  Sina A. Gharib,et al.  Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function , 2012, PLoS genetics.

[33]  Y. Okada,et al.  Functional Variants in NFKBIE and RTKN2 Involved in Activation of the NF-κB Pathway Are Associated with Rheumatoid Arthritis in Japanese , 2012, PLoS genetics.

[34]  Sebastian M. Armasu,et al.  A genome‐wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q , 2012, Journal of thrombosis and haemostasis : JTH.

[35]  C. Rotimi,et al.  Genome-wide associated loci influencing interleukin (IL)-10, IL-1Ra, and IL-6 levels in African Americans , 2012, Immunogenetics.

[36]  Christian Gieger,et al.  Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. , 2012, American journal of human genetics.

[37]  Jennifer Mulle,et al.  A Genome-Wide Scan of Ashkenazi Jewish Crohn's Disease Suggests Novel Susceptibility Loci , 2012, PLoS genetics.

[38]  Markus Perola,et al.  Genome-wide association study identifies multiple loci influencing human serum metabolite levels , 2012, Nature Genetics.

[39]  Pak Chung Sham,et al.  GWASdb: a database for human genetic variants identified by genome-wide association studies , 2011, Nucleic Acids Res..

[40]  S. Bergmann,et al.  The evolution of gene expression levels in mammalian organs , 2011, Nature.

[41]  C. Bogardus,et al.  A Genome‐Wide Association Study of BMI in American Indians , 2011, Obesity.

[42]  P. Visscher,et al.  GWAS of butyrylcholinesterase activity identifies four novel loci, independent effects within BCHE and secondary associations with metabolic risk factors. , 2011, Human molecular genetics.

[43]  Erika Salvi,et al.  Genome-Wide Scan Identifies TNIP1, PSORS1C1, and RHOB as Novel Risk Loci for Systemic Sclerosis , 2011, PLoS genetics.

[44]  Christian Gieger,et al.  A genome-wide association study of metabolic traits in human urine , 2011, Nature Genetics.

[45]  D. Kiel,et al.  Eight Common Genetic Variants Associated with Serum DHEAS Levels Suggest a Key Role in Ageing Mechanisms , 2011, PLoS genetics.

[46]  Tom R. Gaunt,et al.  Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study , 2011, Human molecular genetics.

[47]  Annette Lee,et al.  Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production , 2011, PLoS genetics.

[48]  A. Gylfason,et al.  Genetic Correction of PSA Values Using Sequence Variants Associated with PSA Levels , 2010, Science Translational Medicine.

[49]  Annette Lee,et al.  Identification of novel genetic markers associated with the clinical phenotypes of systemic sclerosis through a genome wide association strategy , 2010, Journal of Translational Medicine.

[50]  Ayellet V. Segrè,et al.  Hundreds of variants clustered in genomic loci and biological pathways affect human height , 2010, Nature.

[51]  Fabio Macciardi,et al.  Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis , 2010, Nature Genetics.

[52]  Annette Lee,et al.  Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus , 2010, Nature Genetics.

[53]  F. Hu,et al.  Genome-Wide Association Study Identifies Variants at the IL18-BCO2 Locus Associated With Interleukin-18 Levels , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[54]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[55]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[56]  Christian Gieger,et al.  Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium , 2009, Nature Genetics.

[57]  Fernando Rivadeneira,et al.  A genome-wide association study of acenocoumarol maintenance dosage. , 2009, Human molecular genetics.

[58]  Ching-Hon Pui,et al.  Germline genomic variants associated with childhood acute lymphoblastic leukemia , 2009, Nature Genetics.

[59]  K. Siminovitch,et al.  Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. , 2009, The New England journal of medicine.

[60]  David B. Goldstein,et al.  A Genome-Wide Investigation of SNPs and CNVs in Schizophrenia , 2009, PLoS genetics.

[61]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[62]  Yusuke Nakamura,et al.  A nonsynonymous SNP in PRKCH (protein kinase C η) increases the risk of cerebral infarction , 2007, Nature Genetics.

[63]  Michael Lachmann,et al.  Evolution of primate gene expression , 2006, Nature Reviews Genetics.

[64]  D. Gudbjartsson,et al.  A high-resolution recombination map of the human genome , 2002, Nature Genetics.

[65]  M. King,et al.  Evolution at two levels in humans and chimpanzees. , 1975, Science.

[66]  Swapan Mallick,et al.  The genomic landscape of Neanderthal ancestry in present-day humans. , 2016 .

[67]  S. Bandinelli,et al.  Novel gene variants predict serum levels of the cytokines IL-18 and IL-1ra in older adults. , 2014, Cytokine.

[68]  Jing Cui,et al.  Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci , 2010, Nature Genetics.

[69]  A. Hofman,et al.  Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function , 2010, Nature Genetics.

[70]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[71]  Annette Lee,et al.  Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. , 2008, The New England journal of medicine.

[72]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .