Diversity-based interactive learning meets multimodality

Abstract In interactive retrieval tasks, one of the main objectives is to maximize the user information gain throughout search sessions. Retrieving many relevant items is quite important, but it does not necessarily completely satisfy the user needs. When only relevant near-duplicate items are retrieved, the amount of different concepts users are able to extract from the target collection is very limited. Therefore, broadening the number of concepts present in a result set may improve the overall search experience. Diversifying concepts present in the retrieved set is one possibility for increasing the information gain in a single search iteration, maximizing the likelihood of including at least some relevant items for each possible intent of ambiguous or underspecified queries. Relevance feedback approaches may also take advantage of diverse results to improve internal machine learning models. In this context, this work proposes and analyses several multimodal image retrieval approaches built over a learning framework for relevance feedback on diversified results. Our experimental analysis shows that different retrieval modalities are positively impacted by diversity, but achieve best retrieval effectiveness with diversification applied at different moments of a search session. Moreover, the best results are achieved with a query-by-example approach using multimodal information obtained from feedback. In summary, we demonstrate that learning with diversity is an effective alternative for boosting multimodal interactive learning approaches.

[1]  Mohan S. Kankanhalli,et al.  Multimodal fusion for multimedia analysis: a survey , 2010, Multimedia Systems.

[2]  Fabio A. González,et al.  Multimodal representation, indexing, automated annotation and retrieval of image collections via non-negative matrix factorization , 2012, Neurocomputing.

[3]  Craig MacDonald,et al.  Selectively diversifying web search results , 2010, CIKM.

[4]  Ricardo da Silva Torres,et al.  Recuperação de Imagens da Web Utilizando Múltiplas Evidências Textuais e Programação Genética , 2009, SBBD.

[5]  Roelof van Zwol,et al.  Diversifying image search with user generated content , 2008, MIR '08.

[6]  Ricardo da Silva Torres,et al.  Diversity-driven learning for multimodal image retrieval with relevance feedback , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[7]  Robert E. Williamson,et al.  Does relevance feedback improve document retrieval performance , 1978, SIGIR 1978.

[8]  Harris Wu,et al.  The effects of fitness functions on genetic programming-based ranking discovery forWeb search , 2004, J. Assoc. Inf. Sci. Technol..

[9]  Katja Hofmann,et al.  Balancing Exploration and Exploitation in Learning to Rank Online , 2011, ECIR.

[10]  Divesh Srivastava,et al.  On query result diversification , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[11]  Dah-Jye Lee,et al.  Using relevance feedback with short-term memory for content-based spine X-ray image retrieval , 2009, Neurocomputing.

[12]  Hervé Glotin,et al.  A Comparative Study of Diversity Methods for Hybrid Text and Image Retrieval Approaches , 2008, CLEF.

[13]  Thorsten Joachims,et al.  Online learning to diversify from implicit feedback , 2012, KDD.

[14]  Meng Jian,et al.  Interactive image retrieval using constraints , 2015, Neurocomputing.

[15]  Xiangyang Wang,et al.  An image retrieval scheme with relevance feedback using feature reconstruction and SVM reclassification , 2014, Neurocomputing.

[16]  Yongcai Wang,et al.  Diversity-aware retrieval of medical records , 2015, Comput. Ind..

[17]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[18]  Martha Larson,et al.  Intent-Aware Video Search Result Optimization , 2014, IEEE Transactions on Multimedia.

[19]  Erik Cambria,et al.  Fusing audio, visual and textual clues for sentiment analysis from multimodal content , 2016, Neurocomputing.

[20]  Stéphane Marchand-Maillet,et al.  Combining multimodal preferences for multimedia information retrieval , 2007, MIR '07.

[21]  Martin Halvey,et al.  Diversity, Assortment, Dissimilarity, Variety: A Study of Diversity Measures Using Low Level Features for Video Retrieval , 2009, ECIR.

[22]  Meng Wang,et al.  Optimizing social image search with multiple criteria: Relevance, diversity, and typicality , 2012, Neurocomputing.

[23]  João Paulo Papa,et al.  Supervised pattern classification based on optimum-path forest , 2009 .

[24]  Rodrygo L. T. Santos,et al.  Beyond Relevance , 2016, ACM Trans. Intell. Syst. Technol..

[25]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[26]  Petros Maragos,et al.  Multimodal Saliency and Fusion for Movie Summarization Based on Aural, Visual, and Textual Attention , 2013, IEEE Transactions on Multimedia.

[27]  Xu Chen,et al.  Multimodal Video Indexing and Retrieval Using Directed Information , 2012, IEEE Transactions on Multimedia.

[28]  Craig MacDonald,et al.  Search Result Diversification , 2015, Found. Trends Inf. Retr..

[29]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[30]  Bogdan Ionescu,et al.  LAPI @ 2014 Retrieving Diverse Social Images Task: A Relevance Feedback Diversification Perspective , 2014, MediaEval.

[31]  Paul Clough,et al.  Creating a test collection to evaluate diversity in image retrieval , 2008, SIGIR 2008.

[32]  Hichem Sahbi,et al.  TELECOMParisTech at ImageClefphoto 2008: Bi-Modal Text and Image Retrieval with Diversity Enhancement , 2008, CLEF.

[33]  Tie-Yan Liu Learning to Rank for Information Retrieval , 2009, Found. Trends Inf. Retr..

[34]  Hakan Ferhatosmanoglu,et al.  Diversity based Relevance Feedback for Time Series Search , 2013, Proc. VLDB Endow..

[35]  Saul Vargas,et al.  Explicit relevance models in intent-oriented information retrieval diversification , 2012, SIGIR '12.

[36]  Mohan S. Kankanhalli,et al.  Multimedia Fusion With Mean-Covariance Analysis , 2013, IEEE Transactions on Multimedia.

[37]  H. P. Young,et al.  An axiomatization of Borda's rule , 1974 .

[38]  Francesc J. Ferri,et al.  Improving distance based image retrieval using non-dominated sorting genetic algorithm , 2015, Pattern Recognit. Lett..

[39]  Hermann Ney,et al.  Jointly optimising relevance and diversity in image retrieval , 2009, CIVR '09.

[40]  Ricardo Baeza-Yates,et al.  Modern Information Retrieval - the concepts and technology behind search, Second edition , 2011 .

[41]  James M. Rehg,et al.  Learning Query-Specific Distance Functions for Large-Scale Web Image Search , 2013, IEEE Transactions on Multimedia.

[42]  Borko Furht,et al.  Content-Based Image and Video Retrieval , 2002, Multimedia Systems and Applications Series.

[43]  Ricardo da Silva Torres,et al.  Comparative study of global color and texture descriptors for web image retrieval , 2012, J. Vis. Commun. Image Represent..

[44]  Yue Wang,et al.  ReQ-ReC: high recall retrieval with query pooling and interactive classification , 2014, SIGIR.

[45]  Alexandre X. Falcão,et al.  A new CBIR approach based on relevance feedback and optimum-path forest classification , 2010, J. WSCG.

[46]  Jade Goldstein-Stewart,et al.  The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries , 1998, SIGIR Forum.

[47]  John D. Lafferty,et al.  Beyond independent relevance: methods and evaluation metrics for subtopic retrieval , 2003, SIGIR.

[48]  ChengXiang Zhai,et al.  A learning approach to optimizing exploration–exploitation tradeoff in relevance feedback , 2012, Information Retrieval.

[49]  Yang Yang,et al.  Multimedia Summarization for Social Events in Microblog Stream , 2015, IEEE Transactions on Multimedia.

[50]  Ricardo da Silva Torres,et al.  Learning to rank for content-based image retrieval , 2010, MIR '10.

[51]  Ricardo da Silva Torres,et al.  Multimodal retrieval with relevance feedback based on genetic programming , 2012, Multimedia Tools and Applications.

[52]  M. de Rijke,et al.  Result diversification based on query-specific cluster ranking , 2011, J. Assoc. Inf. Sci. Technol..

[53]  Craig MacDonald,et al.  Intent-aware search result diversification , 2011, SIGIR.

[54]  Xian-Sheng Hua,et al.  Towards a Relevant and Diverse Search of Social Images , 2010, IEEE Transactions on Multimedia.

[55]  Craig MacDonald,et al.  Exploiting query reformulations for web search result diversification , 2010, WWW '10.

[56]  James Lewis,et al.  Data and text mining Text similarity : an alternative way to search MEDLINE , 2006 .

[57]  Kai Song,et al.  Diversifying the image retrieval results , 2006, MM '06.

[58]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[59]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.