Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics
暂无分享,去创建一个
[1] P. Frederickson,et al. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .
[2] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .
[3] Zhiliang Xu,et al. Hierarchical reconstruction for spectral volume method on unstructured grids , 2009, J. Comput. Phys..
[4] Dinshaw S. Balsara,et al. Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .
[5] Anne Gelb,et al. Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling , 2005, J. Sci. Comput..
[6] E. Toro,et al. Restoration of the contact surface in the HLL-Riemann solver , 1994 .
[7] E. Toro,et al. Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[8] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws , 1990 .
[9] Richard Sanders,et al. A third-order accurate variation nonexpansive difference scheme for single nonlinear conservation laws , 1988 .
[10] Michael Dumbser,et al. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..
[11] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[12] Chi-Wang Shu,et al. On positivity preserving finite volume schemes for Euler equations , 1996 .
[13] Steven J. Ruuth,et al. Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods , 2003, Math. Comput. Simul..
[14] Katharine Gurski,et al. An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynamics , 2001, SIAM J. Sci. Comput..
[15] Michael Dumbser,et al. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..
[16] Dinshaw S. Balsara. A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..
[17] Michael Dumbser,et al. Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods , 2013, J. Comput. Phys..
[18] K. Kusano,et al. A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .
[19] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[20] Eleuterio F. Toro,et al. Finite-volume WENO schemes for three-dimensional conservation laws , 2004 .
[21] Steven J. Ruuth,et al. A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..
[22] Eleuterio F. Toro,et al. ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..
[23] Chi-Wang Shu,et al. The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .
[24] Dinshaw Balsara,et al. Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.
[25] Xiangxiong Zhang,et al. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..
[26] K. Waagan,et al. A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics , 2009, J. Comput. Phys..
[27] Rémi Abgrall. APPROXIMATION DU PROBLEME DE RIEMANN VRAIMENT MULTIDIMENSIONNEL DES EQUATIONS D'EULER PAR UNE METHODE DE TYPE ROE (I) : LA LINEARISATION , 1994 .
[28] R. LeVeque. Wave Propagation Algorithms for Multidimensional Hyperbolic Systems , 1997 .
[29] Zhiliang Xu,et al. Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells , 2009, J. Comput. Phys..
[30] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[31] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[32] R. Abgrall. APPROXIMATION DU PROBLEME DE RIEMANN VRAIMENT MULTDIDIMENSIONNEL DES EQUATIONS D'EULER PAR UNE METHODE DE TYPE ROE (II) : SOLUTION DU PROBLEME DE RIEM ANN APPROCHE , 1994 .
[33] Dinshaw S. Balsara. Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..
[34] P. Roe,et al. On Godunov-type methods near low densities , 1991 .
[35] T. Barth. Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations , 1994 .
[36] Carl L. Gardner,et al. Positive Scheme Numerical Simulation of High Mach Number Astrophysical Jets , 2008, J. Sci. Comput..
[37] Michael Dumbser,et al. Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.
[38] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[39] Chi-Wang Shu,et al. Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .