Efficient Data-Driven Geologic Feature Detection from Pre-stack Seismic Measurements using Randomized Machine-Learning Algorithm

Conventional seismic techniques for detecting the subsurface geologic features are challenged by limited data coverage, computational inefficiency, and subjective human factors. We developed a novel data-driven geological feature detection approach based on pre-stack seismic measurements. Our detection method employs an efficient and accurate machine-learning detection approach to extract useful subsurface geologic features automatically. Specifically, our method is based on kernel ridge regression model. The conventional kernel ridge regression can be computationally prohibited because of the large volume of seismic measurements. We employ a data reduction technique in combination with the conventional kernel ridge regression method to improve the computational efficiency and reduce memory usage. In particular, we utilize a randomized numerical linear algebra technique, named Nystr\"om method, to effectively reduce the dimensionality of the feature space without compromising the information content required for accurate detection. We provide thorough computational cost analysis to show efficiency of our new geological feature detection methods. We further validate the performance of our new subsurface geologic feature detection method using synthetic surface seismic data for 2D acoustic and elastic velocity models. Our numerical examples demonstrate that our new detection method significantly improves the computational efficiency while maintaining comparable accuracy. Interestingly, we show that our method yields a speed-up ratio on the order of $\sim10^2$ to $\sim 10^3$ in a multi-core computational environment.

[1]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  J. Krebs,et al.  Fast full-wavefield seismic inversion using encoded sources , 2009 .

[3]  Dave Hale,et al.  Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images , 2013 .

[4]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[5]  Tomaso Poggio,et al.  Automated fault detection without seismic processing , 2017 .

[6]  Ivor W. Tsang,et al.  Improved Nyström low-rank approximation and error analysis , 2008, ICML '08.

[7]  V. Rokhlin,et al.  A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.

[8]  Junseob Shin,et al.  Breast ultrasound tomography with two parallel transducer arrays , 2016, SPIE Medical Imaging.

[9]  Lianjie Huang,et al.  Acoustic- and elastic-waveform inversion using a modified total-variation regularization scheme , 2014 .

[10]  Shusen Wang,et al.  Scalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds , 2017, J. Mach. Learn. Res..

[11]  Curtis M. Oldenburg,et al.  Probability Estimation of CO2 Leakage Through Faults at Geologic Carbon Sequestration Sites , 2008 .

[12]  Matthias W. Seeger,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[13]  M. R. Johnson Structural geology , 1977, Nature.

[14]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[15]  Inderjit S. Dhillon,et al.  Memory Efficient Kernel Approximation , 2014, ICML.

[16]  Cuiping Li,et al.  Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography , 2014, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[17]  Alexander J. Smola,et al.  Fastfood - Computing Hilbert Space Expansions in loglinear time , 2013, ICML.

[18]  David L. Alumbaugh,et al.  The use of predictive analytics for hydrocarbon exploration in the Denver-Julesburg Basin , 2017 .

[19]  Yu Zhang,et al.  A stable and practical implementation of least-squares reverse time migration , 2013 .

[20]  Francis R. Bach,et al.  Sharp analysis of low-rank kernel matrix approximations , 2012, COLT.

[21]  Ameet Talwalkar,et al.  Foundations of Machine Learning , 2012, Adaptive computation and machine learning.

[22]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[23]  Michael W. Mahoney,et al.  Revisiting the Nystrom Method for Improved Large-scale Machine Learning , 2013, J. Mach. Learn. Res..

[24]  Bertha A Hidalgo,et al.  Multivariate or multivariable regression? , 2013, American journal of public health.

[25]  Juan Ramirez,et al.  Machine Learning for Seismic Signal Processing: Phase Classification on a Manifold , 2011, 2011 10th International Conference on Machine Learning and Applications and Workshops.

[26]  Zhihua Zhang,et al.  Towards More Efficient SPSD Matrix Approximation and CUR Matrix Decomposition , 2015, J. Mach. Learn. Res..

[27]  Tony Jan,et al.  VQSVM: A case study for incorporating prior domain knowledge into inductive machine learning , 2010, Neurocomputing.

[28]  Stephen A. McAleavey Ultrasonic Imaging, Tomography, and Therapy , 2017 .

[29]  E. Nyström Über Die Praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben , 1930 .

[30]  M. Sambridge,et al.  Seismic Traveltime Tomography of the Crust and Lithosphere , 2003 .

[31]  José Luis Rojo-Álvarez,et al.  An Introduction to Kernel Methods , 2009, Encyclopedia of Data Warehousing and Mining.

[32]  Zhigang Zhang,et al.  Efficient implementation of ultrasound waveform tomography using source encoding , 2012, Medical Imaging.

[33]  Stergios Stergiopoulos,et al.  Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems , 2000 .

[34]  Wei Zhang,et al.  Unsplit complex frequency-shifted PML implementation using auxiliary differential equations for seismic wave modeling , 2010 .

[35]  Michael A. Saunders,et al.  LSRN: A Parallel Iterative Solver for Strongly Over- or Underdetermined Systems , 2011, SIAM J. Sci. Comput..

[36]  Jie Chen,et al.  Hierarchically Compositional Kernels for Scalable Nonparametric Learning , 2016, J. Mach. Learn. Res..

[37]  Chiyuan Zhang,et al.  Machine-learning Based Automated Fault Detection in Seismic Traces , 2014 .

[38]  Zhigang Zhang,et al.  Efficient implementation of ultrasound waveform tomography using data blending , 2014, Medical Imaging.

[39]  Zhenchun Li,et al.  Least-Squares Reverse-Time Migration with Modified Total-Variation Regularization , 2015 .

[40]  Ameet Talwalkar,et al.  Large-scale SVD and manifold learning , 2013, J. Mach. Learn. Res..

[41]  Sirui Tan,et al.  An efficient finite-difference method with high-order accuracy in both time and space domains for modelling scalar-wave propagation , 2014 .

[42]  Ricardo Vilalta,et al.  Supervised Learning to Detect Salt Body , 2015 .

[43]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[44]  Brendt Wohlberg,et al.  UPRE method for total variation parameter selection , 2010, Signal Process..

[45]  Monica Maceira,et al.  Double-difference traveltime tomography with edge-preserving regularization and a priori interfaces , 2015 .

[46]  Benjamin Recht,et al.  Large Scale Kernel Learning using Block Coordinate Descent , 2016, ArXiv.

[47]  Petros Drineas,et al.  On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..

[48]  S. Muthukrishnan,et al.  Faster least squares approximation , 2007, Numerische Mathematik.

[49]  Shusen Wang,et al.  A Practical Guide to Randomized Matrix Computations with MATLAB Implementations , 2015, ArXiv.

[50]  Gavin C. Cawley,et al.  Estimating Predictive Variances with Kernel Ridge Regression , 2005, MLCW.

[51]  Rong Jin,et al.  Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison , 2012, NIPS.

[52]  F. Herrmann,et al.  A new optimization approach for source-encoding full-waveform inversion , 2013 .

[53]  James T. Kwok,et al.  Time and space efficient spectral clustering via column sampling , 2011, CVPR 2011.

[54]  Michael W. Mahoney,et al.  Fast Randomized Kernel Ridge Regression with Statistical Guarantees , 2015, NIPS.

[55]  H Emerson,et al.  REPORT OF THE COMMITTEE ON HABIT-FORMING DRUGS. , 1923, American journal of public health.

[56]  Lianjie Huang,et al.  Quantifying subsurface geophysical properties changes using double-difference seismic-waveform inversion with a modified total-variation regularization scheme , 2015 .

[57]  Dima Damen,et al.  Recognizing linked events: Searching the space of feasible explanations , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  David P. Woodruff,et al.  Faster Kernel Ridge Regression Using Sketching and Preconditioning , 2016, SIAM J. Matrix Anal. Appl..

[59]  T. van Leeuwen Large-Scale Inversion in Exploration Seismology , 2016 .

[60]  Yu Zhang,et al.  A stable and practical implementation of least-squares reverse time migration , 2013 .

[61]  Aurélien Garivier,et al.  On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..