A study of the structure of poly(hexene-1) prepared by nickel(α-diimine)/MAO catalyst using high resolution NMR spectroscopy

[1]  Amy C. Gottfried,et al.  Living and Block Copolymerization of Ethylene and α-Olefins Using Palladium(II)−α-Diimine Catalysts , 2003 .

[2]  S. Mecking Olefin Polymerization by Late Transition Metal Complexes-A Root of Ziegler Catalysts Gains New Ground. , 2001, Angewandte Chemie.

[3]  D. J. Tempel,et al.  13C and 2D NMR Analysis of Propylene Polymers Made with α-Diimine Late Metal Catalysts† , 2001 .

[4]  M. Brookhart,et al.  Late-metal catalysts for ethylene homo- and copolymerization. , 2000, Chemical reviews.

[5]  R. Mülhaupt,et al.  Influence of n-Alkyl Branches on Glass-Transition Temperatures of Branched Polyethylenes Prepared by Means of Metallocene- and Palladium-Based Catalysts , 2000 .

[6]  G. Britovsek,et al.  The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. , 1999, Angewandte Chemie.

[7]  D. J. Tempel,et al.  Living Polymerization of α-Olefins Using NiII−α-Diimine Catalysts. Synthesis of New Block Polymers Based on α-Olefins , 1996 .

[8]  Maurice Brookhart,et al.  New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins , 1995 .

[9]  Klaus Angermund,et al.  Struktur der aktiven Spezies und Erklärung des Wanderungsmechanismus bei der 2,ω‐polymerisation von α‐olefinen , 1995 .

[10]  M. Demura,et al.  Carbon-13 NMR spectral assignments of regioirregular polypropylene determined from two-dimensional INADEQUATE spectra and chemical shift calculations , 1992 .

[11]  A. Grassi,et al.  Microstructure of isotactic polypropylene prepared with homogeneous catalysis: stereoregularity, regioregularity, and 1,3 insertion , 1988 .

[12]  Y. Doi,et al.  Carbon-13 NMR chemical shift of regioirregular polypropylene , 1987 .

[13]  G. Fink,et al.  Novel Polymerization of α‐Olefins with the Catalyst System Nickel/Aminobis(imino)phosphorane , 1985 .

[14]  H. N. Cheng 13C-NMR determination of inverted propylene units in polypropylene , 1985, Polymer Bulletin.

[15]  A. Zambelli,et al.  Correlation between13C NMR Chemical Shifts and Conformation of Polymers. 3. Hexad Sequence Assignments of Methylene Spectra of Polypropylene , 1980 .

[16]  A. Tonelli,et al.  Carbon-13 Nuclear Magnetic Resonance of Atactic Polypropylene , 1980 .

[17]  Y. Doi Sequence Distributions of Inverted Propylene Units in Polyproplyenes Measured by 13C NMR , 1979 .

[18]  F. Bovey,et al.  Stereoregulation Energies in Propene Polymerization , 1978 .

[19]  A. Zambelli,et al.  Model compounds and 13C NMR investigation of isolated ethylene units in ethylene/propene copolymers , 1978 .

[20]  Y. Doi,et al.  13C NMR analysis of chemical inversion in polypropylene , 1977 .

[21]  F. Bovey,et al.  Model Compounds and13C NMR Observation of Stereosequences of Polypropylene , 1975 .

[22]  C. J. Carman,et al.  Carbon-13 Magnetic Resonance of Some Branched Alkanes , 1973 .

[23]  J. C. Randall Carbon‐13 NMR of ethylene‐1–olefin copolymers: Extension to the short‐chain branch distribution in a low‐density polyethylene , 1973 .

[24]  L. P. Lindeman,et al.  Carbon-13 nuclear magnetic resonance spectrometry. Chemical shifts for the paraffins through C9 , 1971 .