Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies

[1]  Jindong Wu,et al.  Image-based atmospheric correction of QuickBird imagery of Minnesota cropland , 2005 .

[2]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[3]  G. Gianquinto,et al.  The use of SPAD 502 chlorophyll meter for dynamically optimising the nitrogen supply in potato crop: first results , 2003 .

[4]  Satish C. Gupta,et al.  Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. , 2003, Journal of environmental quality.

[5]  J. Goffart,et al.  Management of nitrogen fertilization of winter wheat and potato crops using the chlorophyll meter for crop nitrogen status assessment , 2002 .

[6]  P. Sexton,et al.  COMPARISON OF SPAD CHLOROPHYLL METER READINGS vs. PETIOLE NITRATE CONCENTRATION IN SUGARBEET , 2002 .

[7]  R. Sivasamy,et al.  Chlorophyll Dynamics in Rice (Oryza sativa) Before and After Flowering Based on SPAD (Chlorophyll) Meter Monitoring and its Relation with Grain Yield , 2002 .

[8]  B. Hoel Chlorophyll Meter Readings in Winter Wheat: Cultivar Differences and Prediction of Grain Protein Content , 2002 .

[9]  K. Solhaug,et al.  Effect of Irradiance on Chlorophyll Estimation with the Minolta SPAD-502 Leaf Chlorophyll Meter , 1998 .

[10]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[11]  Scott C. Chapman,et al.  Using a Chlorophyll Meter to Estimate Specific Leaf Nitrogen of Tropical Maize during Vegetative Growth , 1997 .

[12]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[13]  S. Ustin,et al.  Estimating leaf biochemistry using the PROSPECT leaf optical properties model , 1996 .

[14]  C. Elvidge,et al.  Comparison of broad-band and narrow-band red and near-infrared vegetation indices , 1995 .

[15]  B. Yoder,et al.  Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .

[16]  J. Sieczka,et al.  Field chlorophyll measurements to assess the nitrogen status of potato varieties , 1994 .

[17]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[18]  J. Vos,et al.  Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage , 1993, Potato Research.

[19]  J. Schepers,et al.  Comparison of corn leaf nitrogen concentration and chlorophyll meter readings , 1992 .

[20]  F. T. Turner,et al.  Chlorophyll Meter to Predict Nitrogen Topdress Requirement for Semidwarf Rice , 1991 .

[21]  R. Cabrera,et al.  Rapid direct determination of ammonium and nitrate in soil and plant tissue extracts , 1990 .

[22]  F. Baret,et al.  TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[23]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[24]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[25]  A. J. Richardsons,et al.  DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION , 1977 .

[26]  B. Leblon,et al.  Non-destructive estimation of potato leaf chlorophyll and protein contents from hyperspectral measurements using the PROSPECT radiative transfer model , 2006 .

[27]  A. Field Discovering statistics using SPSS for Windows. , 2000 .

[28]  Carl J. Rosen,et al.  Potato yield response and nitrate leaching as influenced by nitrogen management , 1998 .

[29]  J. Schepers,et al.  Nitrogen Deficiency Detection Using Reflected Shortwave Radiation from Irrigated Corn Canopies , 1996 .