III-Vs on Si for photonic applications-A monolithic approach
暂无分享,去创建一个
Wondwosen Metaferia | Carl Junesand | Sebastian Lourdudoss | Lech Wosinski | S. Lourdudoss | Zhechao Wang | W. Metaferia | C. Junesand | Chen Hu | L. Wosinski | Chen Hu | Zhechao Wang
[1] Hui Chen,et al. On-Chip Optical Interconnect Roadmap: Challenges and Critical Directions , 2005, IEEE Journal of Selected Topics in Quantum Electronics.
[2] D. Wight,et al. Carrier recombination at dislocations in epitaxial gallium phosphide layers , 1977 .
[3] Yves Campidelli,et al. Direct growth of GaAs-based structures on exactly (001)-oriented Ge/Si virtual substrates: reduction of the structural defect density and observation of electroluminescence at room temperature under CW electrical injection , 2004 .
[4] M. Paniccia,et al. A continuous-wave Raman silicon laser , 2005, Nature.
[5] Isabelle Sagnes,et al. III-V photonic crystal wire cavity laser on silicon wafer , 2010 .
[6] L. Cerutti,et al. GaSb-Based Laser, Monolithically Grown on Silicon Substrate, Emitting at 1.55 $\mu$ m at Room Temperature , 2010, IEEE Photonics Technology Letters.
[7] Carl Junesand,et al. InP overgrowth on SiO2 for active photonic devices on silicon , 2010, OPTO.
[8] Geert Morthier,et al. An ultra-small, low power all-optical flip-flop memory on a silicon chip , 2010 .
[9] K. Ploog,et al. Optical and structural properties of GaAs grown on (100) Si by molecular‐beam epitaxy , 1988 .
[10] Min Qiu,et al. Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals , 2002 .
[11] Sebastian Lourdudoss,et al. Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer , 2008 .
[12] Wolfgang Stolz,et al. Dilute nitride Ga(NAsP)/GaP‐heterostructures: toward a material development for novel optoelectronic functionality on Si‐substrate , 2007 .
[13] C. Bozler,et al. Low‐dislocation‐density GaAs epilayers grown on Ge‐coated Si substrates by means of lateral epitaxial overgrowth , 1982 .
[14] Amnon Yariv,et al. Engineering supermode silicon/III-V hybrid waveguides for laser oscillation , 2008 .
[15] L. Sekaric,et al. Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.
[16] Takeshi Kamijoh,et al. Thermal Conductivity of Amorphous Silicon , 1996 .
[17] Omri Raday,et al. A hybrid AlGaInAs-silicon evanescent waveguide photodetector. , 2007, Optics express.
[18] Yan-Ting Sun,et al. Epitaxial Lateral Overgrowth of Indium Phosphide and Its Application in Heteroepitaxy , 2003 .
[19] Lynn D. Hutcheson,et al. FTTx: Current Status and the Future , 2008, IEEE Communications Magazine.
[20] Avi Zadok,et al. Electrically pumped hybrid evanescent Si/InGaAsP lasers. , 2009, Optics letters.
[21] S. Lourdudoss,et al. Temporally resolved regrowth of InP , 1995 .
[22] Sadao Adachi,et al. Lattice thermal resistivity of III–V compound alloys , 1983 .
[23] L. D. Negro,et al. Optical gain in silicon nanocrystals , 2000, Nature.
[24] Yan-Ting Sun,et al. Thermal strain in indium phosphide on silicon obtained by epitaxial lateral overgrowth , 2003 .
[25] Di Liang,et al. A distributed feedback silicon evanescent laser. , 2008, Optics express.
[26] A Yariv,et al. Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection lasers on (100) Si substrates at room temperature. , 1987, Optics letters.
[27] H. Asai. Anisotropic lateral growth in GaAs MOCVD layers on (001) substrates , 1987 .
[28] Yan-Ting Sun,et al. Crystal Defects and Strain of Epitaxial InP Layers Laterally Overgrown on Si , 2006 .
[29] Dimitri A. Antoniadis,et al. High quality Ge on Si by epitaxial necking , 2000 .
[30] N. Feng,et al. Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers , 2002 .
[31] Sebastian Lourdudoss,et al. Hydride vapor phase epitaxy revisited , 1997 .