Axial crushing of hollow and foam filled tubes: An overview

Herein, a detailed review of the past studies carried out on crushing and energy absorption behaviour of hollow and foam filled tubes under axial compression is presented. Importance of such investigation is discussed for understanding the research need and to develop suitable alternatives. The focus of review is the deformation mechanism and energy absorption of hollow circular and square tubes, foam filled circular and square tubes notably. Comprehensive review on the various deformation modes for these tubes under axial impact load and effect of foam filling is presented. The review includes the various parameters affecting the peak load and energy absorption. Although various other forms of energy absorbing materials and structures exist such as composites, multi-wall tubes and honeycombs, these are not within the scope of present review. This paper intends to provide assistance in design and development of empty and foam filled tubes as effective energy absorbers. Further, this paper provides the necessary information for designers to understand the deformation of such tubes.

[1]  Odd Sture Hopperstad,et al.  Design and finite element simulations of aluminium foam-filled thin-walled tubes , 2005 .

[2]  Lorna J. Gibson,et al.  Mechanical Behavior of Metallic Foams , 2000 .

[3]  M. D. Goel,et al.  Strain rate sensitivity of closed cell aluminium fly ash foam , 2013 .

[4]  Ala Tabiei,et al.  Axial crushing of tubes as an energy dissipating mechanism for the reduction of acceleration induced injuries from mine blasts underneath infantry vehicles , 2009 .

[5]  Mustafa Güden,et al.  The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes , 2005 .

[6]  A. Pugsley THE LARGE-SCALE CRUMPLING OF THIN CYLINDRICAL COLUMNS , 1960 .

[7]  O. Hopperstad,et al.  Static and dynamic crushing of square aluminium extrusions with aluminium foam filler , 2000 .

[8]  John Banhart,et al.  Porous Metals and Metallic Foams: Current Status and Recent Developments , 2008 .

[9]  Kara Kockelman,et al.  Occupant Injury Severity using a Heteroscedastic Ordered Logit Model : Distinguishing the Effects of Vehicle Weight and Type , 2005 .

[10]  Magnus Langseth,et al.  Modelling of tubes subjected to axial crushing , 2010 .

[11]  M. Langseth,et al.  Static crushing of square aluminium extrusions with aluminium foam filler , 1999 .

[12]  S. A. Meguid,et al.  Effect of fillet radii upon the performance of a novel shock absorber for an electrically powered vehicle , 2014 .

[13]  Wlodek Abramowicz The Macro Element Approach in Crash Calculations , 1997 .

[14]  John Banhart,et al.  Weight Savings by Aluminum Metal Foams: Production, Properties and Applications in Automotive , 1999 .

[15]  Shiwei Zhou,et al.  Crashworthiness design for functionally graded foam-filled thin-walled structures , 2010 .

[16]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[17]  M. Rais-Rohani,et al.  Comparison of global and local response surface techniques in reliability-based optimization of composite structures , 2004 .

[18]  Patrick J Veale Investigation of the Behavior of Open Cell Aluminum Foam , 2010 .

[19]  W. Abramowicz,et al.  Dynamic axial crushing of square tubes , 1984 .

[20]  T. D. Williams,et al.  The Prediction of Frontal Impact Crashworthiness of a Spaceframe Sportscar , 1999 .

[21]  Norman Jones Structural Impact: Author Index , 2011 .

[22]  M. Avalle,et al.  Maximisation of the crushing performance of a tubular device by shape optimisation , 2000 .

[23]  Lisa E. Jones,et al.  Energy Absorbing Seat System for an Agricultural Aircraft , 2002 .

[24]  G. Lu,et al.  Quasi-static axial compression of thin-walled circular aluminium tubes , 2001 .

[25]  N. Gupta,et al.  Collapse mode transitions of thin tubes with wall thickness, end condition and shape eccentricity , 2006 .

[26]  Odd Sture Hopperstad,et al.  Crash behaviour of thin-walled aluminium members , 1998 .

[27]  Saeed Ziaei-Rad,et al.  Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings , 2008 .

[28]  P. Raju Mantena,et al.  Impact and dynamic response of high-density structural foams used as filler inside circular steel tube , 2003 .

[29]  N. Gupta,et al.  Finite Element Analysis of Collapse of Metallic Tubes , 2008 .

[30]  J. Cirne,et al.  Dynamic axial crushing of short to long circular aluminium tubes with agglomerate cork filler , 2007 .

[31]  Michael D. Gilchrist,et al.  Designing the energy absorption capacity of functionally graded foam materials , 2009 .

[32]  G. R. Johnson,et al.  A CONSTITUTIVE MODEL AND DATA FOR METALS SUBJECTED TO LARGE STRAINS, HIGH STRAIN RATES AND HIGH TEMPERATURES , 2018 .

[33]  M. D. Goel,et al.  Dynamic compression behavior of cenosphere aluminum alloy syntactic foam , 2012 .

[34]  O. D. Neikov Chapter 4 – Nanopowders , 2009 .

[35]  Shaker A. Meguid,et al.  Solution stability in the dynamic collapse of square aluminium columns , 2007 .

[36]  Abbas Niknejad,et al.  Theoretical Investigation of the Instantaneous Folding Force during the First Fold Creation in a Square Column , 2008 .

[37]  H. Nouraei Nonlinear FEA of the Crush Behaviour of Functionally Graded Foam-filled Columns , 2011 .

[38]  E. C. Chirwa,et al.  Theoretical analysis of tapered thin-walled metal inverbucktube , 1993 .

[39]  Abdulmalik A. Alghamdi,et al.  Collapsible impact energy absorbers: an overview , 2001 .

[40]  Mehdi Tajdari,et al.  Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading , 2010 .

[41]  R. Velmurugan,et al.  An Analysis of Axial Crushing of Composite Tubes , 1997 .

[42]  L. D. Kenny Mechanical Properties of Particle Stabilized Aluminum Foam , 1996 .

[43]  P. D. Soden,et al.  Axial crushing of square tubes , 1983 .

[44]  S. Reid PLASTIC DEFORMATION MECHANISMS IN AXIALLY COMPRESSED METAL TUBES USED AS IMPACT ENERGY ABSORBERS , 1993 .

[45]  Kara M. Kockelman,et al.  Use of heteroscedastic ordered logit model to study severity of occupant injury: Distinguishing effects of vehicle weight and type , 2005 .

[46]  T. Wierzbicki,et al.  Axial Crushing of Multicorner Sheet Metal Columns , 1989 .

[48]  Shaker A. Meguid,et al.  On the crush behaviour of ultralight foam-filled structures , 2004 .

[49]  Norman Jones,et al.  Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes , 2004 .

[50]  A. Aljawi,et al.  Numerical Simulation of Axial Crushing of Circular Tubes@@@محاكاة رقمية للانهيار المحوري لأنابيب اسطوانية , 2002 .

[51]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .

[52]  Oleg D. Neikov,et al.  Handbook of Non-Ferrous Metal Powders: Technologies and Applications , 2008 .

[53]  M. Ashby,et al.  Metal Foams: A Design Guide , 2000 .

[54]  Marina Bosch,et al.  Metal Foams A Design Guide , 2016 .

[55]  G. S. Sekhon,et al.  A study of fold formation in axisymmetric axial collapse of round tubes , 2002 .

[56]  Seyed Jamal Hosseinipour,et al.  Energy absorbtion and mean crushing load of thin-walled grooved tubes under axial compression , 2003 .

[57]  F. Rammerstorfer,et al.  Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam , 2000 .

[58]  Javad Marzbanrad,et al.  Effects of the triggering of circular aluminum tubes on crashworthiness , 2009 .

[59]  Norman Jones,et al.  Dynamic progressive buckling of circular and square tubes , 1986 .

[60]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[61]  Mahmoud Shakeri,et al.  Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation , 2007 .

[62]  Yan-jie Liu,et al.  Finite Element Analysis and Shape Optimization of Automotive Crash-Box Subjected to Low Velocity Impact , 2009, 2009 International Conference on Measuring Technology and Mechatronics Automation.

[63]  N. Huynh,et al.  A study of microstructural evolution around crack tip using crystal plasticity finite-element method , 2008 .

[64]  R. A. Jeryan,et al.  Effectiveness of Polyurethane Foam in Energy Absorbing Structures , 1982 .

[65]  Klaus-Jürgen Bathe,et al.  Crushing and crashing of tubes with implicit time integration , 2012 .

[66]  Masoud Rais-Rohani,et al.  A comparative study of metamodeling methods for multiobjective crashworthiness optimization , 2005 .

[67]  N. Gupta,et al.  Some aspects of axial collapse of cylindrical thin-walled tubes , 1998 .

[68]  M. D. Goel,et al.  Deformation and Energy Absorption of Aluminum Foam Filled Square Tubes , 2012 .

[69]  Odd Sture Hopperstad,et al.  A demonstrator bumper system based on aluminium foam filled crash boxes , 2000 .

[70]  Marzio Grasso,et al.  Damage Tolerance of Rail Vehicle Energy Absorbers , 2012 .

[71]  J. M. Alexander AN APPROXIMATE ANALYSIS OF THE COLLAPSE OF THIN CYLINDRICAL SHELLS UNDER AXIAL LOADING , 1960 .

[72]  W. Altenhof,et al.  Quasi-static axial cutting of AA6061 T4 and T6 round extrusions , 2008 .

[73]  Shaker A. Meguid,et al.  On the layered micromechanical three-dimensional finite element modelling of foam-filled columns , 2004 .

[74]  Tomasz Wierzbicki,et al.  Crash behavior of box columns filled with aluminum honeycomb or foam , 1998 .

[75]  G. Gary Wang,et al.  ADAPTIVE RESPONSE SURFACE METHOD - A GLOBAL OPTIMIZATION SCHEME FOR APPROXIMATION-BASED DESIGN PROBLEMS , 2001 .

[76]  T. Wierzbicki,et al.  Experimental and numerical studies of foam-filled sections , 2000 .

[77]  Koetsu Yamazaki,et al.  Maximization of the crushing energy absorption of cylindrical shells , 2000 .

[78]  T. Y. Reddy,et al.  Axial compression of foam-filled thin-walled circular tubes , 1988 .

[79]  David H. Laananen Crashworthiness analysis of commuter aircraft seats and restraint systems , 1991 .

[80]  P. H. Thornton ENERGY ABSORPTION BY FOAM FILLED STRUCTURES , 1980 .