A p-Laplacian Approximation for Some Mass Optimization Problems
暂无分享,去创建一个
[1] Pierre Seppecher,et al. Energies with respect to a measure and applications to low dimensional structures , 1997 .
[2] P. Seppecher,et al. Locking materials and the topology of optimal shapes , 2001 .
[3] G. Buttazzo,et al. Characterization of optimal shapes and masses through Monge-Kantorovich equation , 2001 .
[4] Ilaria Fragalà,et al. On some notions of tangent space to a measure , 1999 .
[5] Déplacements à déformations bornées et champs de contrainte mesures , 1985 .
[6] L. Evans. Partial Differential Equations and Monge-Kantorovich Mass Transfer , 1997 .
[7] Guy Bouchitté,et al. Convergence of Sobolev spaces on varying manifolds , 2001 .
[8] Guy Bouchitté,et al. Mean curvature of a measure and related variational problems , 1997 .
[9] G. Allaire,et al. Optimal design for minimum weight and compliance in plane stress using extremal microstructures , 1993 .
[10] Pierre Seppecher,et al. Mathématiques/Mathematics Shape optimization solutions via Monge-Kantorovich equation , 1997 .
[11] L. Evans,et al. Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .
[12] R. McCann,et al. Monge's transport problem on a Riemannian manifold , 2001 .