Random Search for Hyper-Parameter Optimization
暂无分享,去创建一个
[1] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[2] Richard Bellman,et al. Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.
[3] John A. Nelder,et al. A Simplex Method for Function Minimization , 1965, Comput. J..
[4] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[5] W. Vent,et al. Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .
[6] I. A. Antonov,et al. An economic method of computing LPτ-sequences , 1979 .
[7] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[8] Harald Niederreiter,et al. Implementation and tests of low-discrepancy sequences , 1992, TOMC.
[9] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[10] M. Powell. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .
[11] A. Owen,et al. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 1997 .
[12] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[13] Radford M. Neal. Assessing Relevance determination methods using DELVE , 1998 .
[14] J. Spall,et al. Simulation-Based Optimization with Stochastic Approximation Using Common Random Numbers , 1999 .
[15] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[16] Petros Koumoutsakos,et al. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.
[17] Brian Gough,et al. GNU Scientific Library Reference Manual - Third Edition , 2003 .
[18] Alexander Nareyek,et al. Choosing search heuristics by non-stationary reinforcement learning , 2004 .
[19] Tito Homem-de-Mello,et al. Quas-Monte Carlo Strategies for Stochastic Optimization , 2006, Proceedings of the 2006 Winter Simulation Conference.
[20] C. Weihs,et al. Response Surface Methodology for Optimizing Hyper Parameters , 2006 .
[21] Yee Whye Teh,et al. A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.
[22] Yoshua Bengio,et al. An empirical evaluation of deep architectures on problems with many factors of variation , 2007, ICML '07.
[23] Yoshua. Bengio,et al. Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..
[24] Yoshua Bengio,et al. Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.
[25] Frank Hutter,et al. Automated configuration of algorithms for solving hard computational problems , 2009 .
[26] Thomas Weise,et al. Global Optimization Algorithms -- Theory and Application , 2009 .
[27] Ashwin Srinivasan,et al. Parameter Screening and Optimisation for ILP using Designed Experiments , 2011, J. Mach. Learn. Res..
[28] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[29] Yoshua Bengio,et al. Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.
[30] Yoshua Bengio,et al. Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.
[31] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[32] Kevin Leyton-Brown,et al. Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.
[33] BengioYoshua,et al. Random search for hyper-parameter optimization , 2012 .
[34] Klaus-Robert Müller,et al. Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.
[35] Geoffrey E. Hinton. A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.