A fully-coupled fluid-structure interaction simulation of cerebral aneurysms

This paper presents a computational vascular fluid-structure interaction (FSI) methodology and its application to patient-specific aneurysm models of the middle cerebral artery bifurcation. A fully coupled fluid-structural simulation approach is reviewed, and main aspects of mesh generation in support of patient-specific vascular FSI analyses are presented. Quantities of hemodynamic interest such as wall shear stress and wall tension are studied to examine the relevance of FSI modeling as compared to the rigid arterial wall assumption. We demonstrate the importance of including the flexible wall modeling in vascular blood flow simulations by performing a comparison study that involves four patient-specific models of cerebral aneurysms varying in shape and size.

[1]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[2]  E. Rank,et al.  High order finite elements for shells , 2005 .

[3]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[4]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data , 2010 .

[5]  Charles A. Taylor,et al.  Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries , 2006 .

[6]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[7]  Chandrajit L. Bajaj,et al.  Quality meshing of implicit solvation models of biomolecular structures , 2006, Comput. Aided Geom. Des..

[8]  Alison L. Marsden,et al.  A computational framework for derivative-free optimization of cardiovascular geometries , 2008 .

[9]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[10]  T. Tezduyar,et al.  Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures , 2006 .

[11]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[12]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .

[13]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[14]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[15]  R Pietrabissa,et al.  Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. , 2002, Biorheology.

[16]  Charles A. Taylor,et al.  A Computational Framework for Fluid-Solid-Growth Modeling in Cardiovascular Simulations. , 2009, Computer methods in applied mechanics and engineering.

[17]  Yuri Bazilevs,et al.  High-Fidelity Tetrahedral Mesh Generation from Medical Imaging Data for Fluid-Structure Interaction Analysis of Cerebral Aneurysms , 2009 .

[18]  Charles A. Taylor,et al.  A coupled momentum method for modeling blood flow in three-dimensional deformable arteries , 2006 .

[19]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[20]  Yuri Bazilevs,et al.  Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation , 2008, Stroke.

[21]  Kenneth E. Jansen,et al.  A better consistency for low-order stabilized finite element methods , 1999 .

[22]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[23]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[24]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[25]  Thomas J. R. Hughes,et al.  Calculation of shear stresses in the Fourier--Galerkin formulation of turbulent channel flows: projection, the Dirichlet filter and conservation , 2003 .

[26]  T. Tezduyar,et al.  Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling , 2008 .

[27]  Toshio Kobayashi,et al.  Influence of wall elasticity in patient-specific hemodynamic simulations , 2007 .

[28]  Thomas J. R. Hughes,et al.  Finite element modeling of blood flow in arteries , 1998 .

[29]  M. Vidrascu,et al.  A partitioned Newton method for the interaction of a fluid and a 3D shell structure , 2010 .

[30]  Stephen B. Pope,et al.  Large-Eddy Simulation Using Projection onto Local Basis Functions , 2001 .

[31]  T. Tezduyar,et al.  Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique , 2008 .

[32]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[33]  Francesco Migliavacca,et al.  Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release , 2009 .

[34]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[35]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[36]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[37]  Tayfun E. Tezduyar,et al.  Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique , 2009 .

[38]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[39]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[40]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[41]  Rainald Löhner,et al.  Simulation of intracranial aneurysm stenting: Techniques and challenges , 2009 .

[42]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[43]  Yongjie Zhang,et al.  3D Finite Element Meshing from Imaging Data. , 2005, Computer methods in applied mechanics and engineering.

[44]  J. Lumley Fluid Mechanics and the Environment: Dynamical Approaches , 2001 .

[45]  Thomas J. R. Hughes,et al.  Consistent finite element calculations of boundary and internal fluxes , 1998 .

[46]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[47]  Toshio Kobayashi,et al.  Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes , 2009 .