Reversing k-symmetries in dynamical systems
暂无分享,去创建一个
[1] D'Ariano,et al. Classical and quantum structures in the kicked-top model. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[2] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[3] André Vanderbauwhede,et al. Local bifurcation and symmetry , 1982 .
[4] H. C. Corben,et al. Classical Mechanics (2nd ed.) , 1961 .
[5] J. Lamb,et al. A natural class of generalized Fibonacci chains , 1994 .
[6] M. Baake,et al. Trace maps as 3D reversible dynamical systems with an invariant , 1994 .
[7] G. Quispel,et al. Cyclic reversing k-symmetry groups , 1995 .
[8] R. MacKay. Equivariant universality classes , 1984 .
[9] J. Lamb. Stochastic webs with fourfold rotation symmetry , 1994 .
[10] Michael Baake,et al. TRACE MAPS, INVARIANTS, AND SOME OF THEIR APPLICATIONS , 1993 .
[11] J. Lamb. Crystallographic symmetries of stochastic webs , 1993 .
[12] E. Piña,et al. On the symmetry lines of the standard mapping , 1987 .
[13] A. L. Loeb,et al. Color and symmetry , 1972 .
[14] G. R. W. Quispel,et al. Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems , 1992 .
[15] David H. Sattinger,et al. Group theoretic methods in bifurcation theory , 1979 .
[16] Symmetry in regular motion; Relation to chaos , 1990 .
[17] Symplectic reversible maps, tiles and chaos , 1992 .
[18] J. Lamb,et al. Symmetries and reversing symmetries in kicked systems , 1994 .
[19] C. Eugene Wayne,et al. Weak Chaos and Quasi-Regular Patterns. By G. M. ZASLAVSKY, R. Z. SAGDEEV, D. A. USIKOV and A. A CHERNIKOV. Cambridge University Press, 1991. 253 pp. £40 or $75 , 1992, Journal of Fluid Mechanics.
[20] Vladimir Igorevich Arnolʹd,et al. Problèmes ergodiques de la mécanique classique , 1967 .
[21] J. W. Humberston. Classical mechanics , 1980, Nature.
[22] E. Piña,et al. Symmetries of the quasi-crystal mapping , 1989 .
[23] J. Craggs. Applied Mathematical Sciences , 1973 .
[24] F. Haake,et al. Classical and quantum chaos for a kicked top , 1987 .
[25] M. Golubitsky,et al. Singularities and groups in bifurcation theory , 1985 .
[26] Martin Golubitsky,et al. Symmetry-increasing bifurcation of chaotic attractors , 1988 .
[27] B. M. Fulk. MATH , 1992 .
[28] P. Richter,et al. A breathing chaos , 1990 .
[29] Jeroen S. W. Lamb,et al. Reversing symmetries in dynamical systems , 1992 .
[30] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[31] A critical Ising model on the Labyrinth , 1994, solv-int/9902009.
[32] Chao Tang,et al. Localization Problem in One Dimension: Mapping and Escape , 1983 .
[33] Tadatsugu Hatori,et al. Stochasticity and Symmetry of the Standard Map , 1989 .
[34] G. Quispel,et al. Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and Painlevé reduction , 1992 .
[35] J. Lamb,et al. Local bifurcations on the plane with reversing point group symmetry , 1995 .
[36] G. Quispel,et al. Dynamics and K-Symmetries , 1994 .