Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer(®) therapeutics.

[1]  A. Więcek,et al.  C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria , 2016, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[2]  D. Swinkels,et al.  Effect of the antihepcidin Spiegelmer lexaptepid on inflammation-induced decrease in serum iron in humans. , 2014, Blood.

[3]  Giuseppe Rossi,et al.  SDF-1 inhibition targets the bone marrow niche for cancer therapy. , 2014, Cell reports.

[4]  Matthew T. Weinstock,et al.  Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity , 2014, Proceedings of the National Academy of Sciences.

[5]  S. Klußmann,et al.  Identification and characterization of a mirror-image oligonucleotide that binds and neutralizes sphingosine 1-phosphate, a central mediator of angiogenesis , 2014, The Biochemical journal.

[6]  T. Luedde,et al.  Pharmacological inhibition of the chemokine C‐C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly‐6C+ macrophage infiltration in mice , 2014, Hepatology.

[7]  Fabian Kiessling,et al.  CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis , 2014, Gut.

[8]  Michael J Keating,et al.  The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. , 2014, Blood.

[9]  T. Jang,et al.  Blockade of SDF-1 after irradiation inhibits tumor recurrences of autochthonous brain tumors in rats , 2013, Neuro-oncology.

[10]  J. Friedberg,et al.  Ibrutinib In Combination With Bendamustine and Rituximab Is Active and Tolerable In Patients With Relapsed/Refractory CLL/SLL: Final Results Of a Phase 1b Study , 2013 .

[11]  M. Steurer,et al.  Anti-CXCL12/SDF-1 Spiegelmer® Nox-A12 Alone and In Combination With Bendamustine and Rituximab In Patients With Relapsed Chronic Lymphocytic Leukemia (CLL): Results From A Phase IIa Study , 2013 .

[12]  R. Greil,et al.  Anti-CXCL12/SDF-1 Spiegelmer® Nox-A12 Alone and In Combination With Bortezomib and Dexamethasone In Patients With Relapsed Multiple Myeloma: Results From A Phase IIa Study , 2013 .

[13]  M. Konopleva,et al.  SDF-1 Inhibition Using Spiegelmer® Nox-A12 As a Novel Strategy For Targeting AML Cells Within Their BM Microenvironment , 2013 .

[14]  R. Greil,et al.  The Spiegelmer® Nox-A12 Abrogates Homing Of Human CLL Cells To Bone Marrow and Mobilizes Murine CLL Cells In The Eμ-TCL1 Transgenic Mouse Model Of CLL , 2013 .

[15]  G. F. Joyce,et al.  Binding of a structured D-RNA molecule by an L-RNA aptamer. , 2013, Journal of the American Chemical Society.

[16]  Chi Pang Wen,et al.  Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention , 2013, The Lancet.

[17]  Markus Huber-Lang,et al.  A Novel C5a-neutralizing Mirror-image (l-)Aptamer Prevents Organ Failure and Improves Survival in Experimental Sepsis , 2013, Molecular therapy : the journal of the American Society of Gene Therapy.

[18]  S. Klußmann,et al.  Hematopoietic Stem and Progenitor Cell Mobilization in Mice and Humans by a First‐in‐Class Mirror‐Image Oligonucleotide Inhibitor of CXCL12 , 2013, Clinical pharmacology and therapeutics.

[19]  S. Sell,et al.  A Mixed Mirror-image DNA/RNA Aptamer Inhibits Glucagon and Acutely Improves Glucose Tolerance in Models of Type 1 and Type 2 Diabetes , 2013, The Journal of Biological Chemistry.

[20]  P. Houghton,et al.  Bioactive Lipids S1P and C1P Are Prometastatic Factors in Human Rhabdomyosarcoma, and Their Tissue Levels Increase in Response to Radio/Chemotherapy , 2013, Molecular Cancer Research.

[21]  Xiaoting Zhang,et al.  RNA aptamers and their therapeutic and diagnostic applications. , 2013, International journal of biochemistry and molecular biology.

[22]  S. Klußmann,et al.  Targeting complement component 5a promotes vascular integrity and limits airway remodeling , 2013, Proceedings of the National Academy of Sciences.

[23]  S. Sell,et al.  The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys. , 2013, Blood.

[24]  D. Swinkels,et al.  Randomized double-blind placebo-controlled PK/PD study on the effects of a single intravenous dose of the anti-hepcidin Spiegelmer NOX-H94 on serum iron during experimental human endotoxemia , 2013, Critical Care.

[25]  M. Dimopoulos,et al.  A prospective, international phase 2 study of bortezomib retreatment in patients with relapsed multiple myeloma , 2013, British journal of haematology.

[26]  B. Dahal,et al.  Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. , 2012, American journal of respiratory and critical care medicine.

[27]  D. Swinkels,et al.  Single and Repeated Dose First-in-Human Study with the Anti-Hepcidin Spiegelmer Nox-H94. , 2012 .

[28]  D. Swinkels,et al.  Randomized Double Blind Placebo Controlled PK/PD Study On the Effects of a Single Intravenous Dose of the Anti-Hepcidin Spiegelmer Nox-H94 On Serum Iron During Experimental Human Endotoxemia , 2012 .

[29]  L. Bielory,et al.  Wet AMD market , 2012, Nature Reviews Drug Discovery.

[30]  S. Klußmann,et al.  Methods for L-ribooligonucleotide sequence determination using LCMS , 2011, Nucleic acids research.

[31]  H. Döhner,et al.  Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[32]  S. Klußmann,et al.  RNA Aptamers and Spiegelmers: Synthesis, Purification, and Post‐Synthetic PEG Conjugation , 2011, Current protocols in nucleic acid chemistry.

[33]  T. Luedde,et al.  Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury , 2011, Gut.

[34]  H. Anders,et al.  Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. , 2011, The American journal of pathology.

[35]  S. Klußmann,et al.  Ghrelin neutralization during fasting-refeeding cycle impairs the recuperation of body weight and alters hepatic energy metabolism , 2011, Molecular and Cellular Endocrinology.

[36]  S. Klußmann,et al.  Polyetheylenimine-Polyplexes of Spiegelmer NOX-A50 Directed against Intracellular High Mobility Group Protein A1 (HMGA1) Reduce Tumor Growth in Vivo* , 2010, The Journal of Biological Chemistry.

[37]  A. Keefe,et al.  Aptamers as therapeutics , 2010, Nature Reviews Drug Discovery.

[38]  S. Klußmann,et al.  Identification and characterisation of C5a-inhibiting biostable aptamers , 2010 .

[39]  S. Klußmann,et al.  Anti-inflammatory Effects Of The Monocyte Chemoattractant Protein-1 Binding Spiegelmer® MNOX-E36 In A Sub-chronic Tobacco Smoke Induced Inflammation Model Of Chronic Obstructive Pulmonary Disease , 2010, ATS 2010.

[40]  K. Thompson,et al.  Discovery and development of therapeutic aptamers. , 2010, Annual review of pharmacology and toxicology.

[41]  H. Anders,et al.  Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes , 2009, Diabetologia.

[42]  Onkar Kulkarni,et al.  Anti-Ccl2 Spiegelmer Permits 75% Dose Reduction of Cyclophosphamide to Control Diffuse Proliferative Lupus Nephritis and Pneumonitis in MRL-Fas(lpr) Mice , 2009, Journal of Pharmacology and Experimental Therapeutics.

[43]  H. Anders,et al.  Chapter 9:Spiegelmer NOX-E36 for Renal Diseases , 2008 .

[44]  H. Anders,et al.  Cardiovascular , Pulmonary and Renal Pathology Late Onset of Ccl 2 Blockade with the Spiegelmer mNOX-E 36 – 3 PEG Prevents Glomerulosclerosis and Improves Glomerular Filtration Rate in db / db Mice , 2010 .

[45]  S. Klußmann,et al.  In-vitro and in-vivo antagonistic action of an anti-amylin Spiegelmer , 2007, Neuroreport.

[46]  Alnawaz Rehemtulla,et al.  CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature , 2007, Proceedings of the National Academy of Sciences.

[47]  Onkar Kulkarni,et al.  Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. , 2007, Journal of the American Society of Nephrology : JASN.

[48]  크리스토퍼 피. 루스코니,et al.  Administration of the reg1 anticoagulation system , 2007 .

[49]  デイビッド エプスタイン,et al.  Complement binding aptamers and anti-C5 agents useful in the treatment of eye disorders , 2007 .

[50]  Gerhard Ziemer,et al.  A New Technique for the Isolation and Surface Immobilization of Mesenchymal Stem Cells from Whole Bone Marrow Using High‐Specific DNA Aptamers , 2006, Stem cells.

[51]  Kevin Wei,et al.  A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development , 2006, The Journal of experimental medicine.

[52]  S. Klußmann,et al.  In vitro selection using a dual RNA library that allows primerless selection , 2006, Nucleic acids research.

[53]  S. Klußmann,et al.  Spiegelmers for Therapeutic Applications – Use of Chiral Principles in Evolutionary Selection Techniques , 2006 .

[54]  K. Messlinger,et al.  Inhibition of stimulated meningeal blood flow by a calcitonin gene‐related peptide binding mirror‐image RNA oligonucleotide , 2006, British journal of pharmacology.

[55]  S. Klußmann,et al.  An L-RNA-based aquaretic agent that inhibits vasopressin in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  T. Kipps,et al.  CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. , 2006, Blood.

[57]  S. Klußmann,et al.  Ghrelin neutralization by a ribonucleic acid-SPM ameliorates obesity in diet-induced obese mice. , 2006, Endocrinology.

[58]  R. Boisgard,et al.  In vivo biodistribution and pharmacokinetics of 18F-labelled Spiegelmers: a new class of oligonucleotidic radiopharmaceuticals , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[59]  S. Klußmann,et al.  Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist , 2005, Nucleic acids research.

[60]  M. Tschöp,et al.  Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  P. Burgstaller,et al.  Biostable aptamers with antagonistic properties to the neuropeptide nociceptin/orphanin FQ. , 2004, RNA.

[62]  S. Klußmann,et al.  A DNA Spiegelmer to staphylococcal enterotoxin B. , 2003, Nucleic acids research.

[63]  B. Sullenger,et al.  RNA aptamers as reversible antagonists of coagulation factor IXa , 2002, Nature.

[64]  S. Klußmann,et al.  In vivo properties of an anti-GnRH Spiegelmer: An example of an oligonucleotide-based therapeutic substance class , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  S. Gill,et al.  Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. , 1999, Journal of chromatography. B, Biomedical sciences and applications.

[66]  R A Bendele,et al.  Derivation of RNA aptamer inhibitors of human complement C5. , 1999, Immunopharmacology.

[67]  Sheela M. Waugh,et al.  2′-Fluoropyrimidine RNA-based Aptamers to the 165-Amino Acid Form of Vascular Endothelial Growth Factor (VEGF165) , 1998, The Journal of Biological Chemistry.

[68]  V. Hornung,et al.  Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair. , 1997, RNA.

[69]  P. S. Kim,et al.  Bioactive and nuclease-resistant L-DNA ligand of vasopressin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Nebojsa Janjic,et al.  Inhibitory DNA ligands to platelet-derived growth factor B-chain. , 1996, Biochemistry.

[71]  V. Erdmann,et al.  Mirror-image RNA that binds D-adenosine , 1996, Nature Biotechnology.

[72]  Volker A. Erdmann,et al.  Mirror-design of L-oligonucleotide ligands binding to L-arginine , 1996, Nature Biotechnology.

[73]  C. Vargeese,et al.  Potent 2'-amino-2'-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. , 1995, Biochemistry.

[74]  G. Ashley Modeling, synthesis, and hybridization properties of (L)-ribonucleic acid , 1992 .

[75]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[76]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[77]  Gerald F. Joyce,et al.  Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA , 1990, Nature.

[78]  Richard A. Lerner,et al.  Tapping the immunological repertoire to produce antibodies of predetermined specificity , 1982, Nature.

[79]  M. Vallazza,et al.  First look at RNA in L-configuration. , 2004, Acta crystallographica. Section D, Biological crystallography.

[80]  N. Janjić,et al.  Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. , 1999, The American journal of pathology.