Deity face recognition using schur decomposition and hausdorff distance measure

Face recognition in deity images is a challenging problem. Most of the existing face recognition methods are very sensitive to pose and illumination changes. This paper proposes a new technique for deity face recognition which is suitable for pose and illumination changes. The proposed approach uses Schur decomposition to speedup PCA computations and doubly modified Hausdorff distance for measuring similarity between different face edge maps. In addition, this paper introduces a new dataset named as Indian DEity dataSet (IDES) for face recognition which contains a collection of face images of Indian deities. Performances of the proposed method for deity face recognition are experimented with IDES dataset. The results show that the proposed method provides promising face recognition accuracy with pose and illumination changes.

[1]  Hanan Samet,et al.  An Incremental Hausdorff Distance Calculation Algorithm , 2011, Proc. VLDB Endow..

[2]  Alice Caplier,et al.  Face Recognition with Patterns of Oriented Edge Magnitudes , 2010, ECCV.

[3]  Li Zhao,et al.  Theoretical analysis of illumination in PCA-based vision systems , 1999, Pattern Recognit..

[4]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[5]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Shang-Hong Lai,et al.  Hybrid image matching combining Hausdorff distance with normalized gradient matching , 2007, Pattern Recognit..

[7]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[8]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[9]  Adrian G. Bors,et al.  Face recognition using ortho-diffusion bases , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[10]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[11]  Michael A. Stewart,et al.  Stability Issues in the Factorization of Structured Matrices , 1997, SIAM J. Matrix Anal. Appl..

[12]  Barnabás Takács,et al.  Comparing face images using the modified Hausdorff distance , 1998, Pattern Recognit..

[13]  M. A. Grudin,et al.  On internal representations in face recognition systems , 2000, Pattern Recognit..

[14]  Yongsheng Gao,et al.  Face Recognition Using Line Edge Map , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[16]  Alex Pentland,et al.  Looking at People: Sensing for Ubiquitous and Wearable Computing , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Yongsheng Gao,et al.  Line segment Hausdorff distance on face matching , 2002, Pattern Recognit..

[18]  Jian-Huang Lai,et al.  Face representation using independent component analysis , 2002, Pattern Recognit..

[19]  Maylor K. H. Leung,et al.  Shape Recognition using Curve Segment Hausdorff Distance , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[20]  Juan José Villanueva,et al.  A Supervised Modification of the Hausdorff Distance for Visual Shape Classification , 2002, Int. J. Pattern Recognit. Artif. Intell..

[21]  Alejandro F. Frangi,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004 .

[22]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[23]  Jun Wang,et al.  Hausdorff Distance with k-Nearest Neighbors , 2012, ICSI.

[24]  Richard P. Brent,et al.  Stability of fast algorithms for structured linear systems , 1999, ArXiv.

[25]  Ruidong Li,et al.  Face Recognition Based on an Alternative Formulation of Orthogonal LPP , 2007, 2007 IEEE International Conference on Control and Automation.