Experimental quantum computational chemistry with optimised unitary coupled cluster ansatz

Simulation of quantum chemistry is one of the most promising applications of quantum computing. While recent experimental works have demonstrated the potential of solving electronic structures with variational quantum eigensolver (VQE), the implementations are either restricted to nonscalable (hardware efficient) or classically simulable (Hartree-Fock) ansatz, or limited to a few qubits with large errors for the more accurate unitary coupled cluster (UCC) ansatz. Here, integrating experimental and theoretical advancements of improved operations and dedicated algorithm optimisations, we demonstrate an implementation of VQE with UCC for H_2, LiH, F_2 from 4 to 12 qubits. Combining error mitigation, we produce high-precision results of the ground-state energy with error suppression by around two orders of magnitude. For the first time, we achieve chemical accuracy for H_2 at all bond distances and LiH at small bond distances in the experiment. Our work demonstrates a feasible path towards a scalable solution to electronic structure calculation, validating the key technological features and identifying future challenges for this goal.

[1]  Xiao Yuan,et al.  Overlapped grouping measurement: A unified framework for measuring quantum states , 2021, Quantum.

[2]  Y. M. Rhee,et al.  Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers , 2022, npj Quantum Information.

[3]  Jun Li,et al.  Progress toward larger molecular simulation on a quantum computer: Simulating a system with up to 28 qubits accelerated by point-group symmetry , 2022, Physical Review A.

[4]  W. Guba,et al.  Quantum computational quantification of protein–ligand interactions , 2021, International Journal of Quantum Chemistry.

[5]  Joonho Lee,et al.  Unbiasing fermionic quantum Monte Carlo with a quantum computer , 2021, Nature.

[6]  Rudy Raymond,et al.  Measurements of Quantum Hamiltonians with Locally-Biased Classical Shadows , 2020, Communications in Mathematical Physics.

[7]  Jian-Wei Pan,et al.  Realization of High-Fidelity Controlled-Phase Gates in Extensible Superconducting Qubits Design with a Tunable Coupler , 2021, Chinese Physics Letters.

[8]  M. Yung,et al.  Circuit-Depth Reduction of Unitary-Coupled-Cluster Ansatz by Energy Sorting. , 2021, 2106.15210.

[9]  Haibin Zhang,et al.  Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. , 2021, Physical review letters.

[10]  D. Berry,et al.  Fault-Tolerant Quantum Simulations of Chemistry in First Quantization , 2021, PRX Quantum.

[11]  G. Chan,et al.  The Fermionic Quantum Emulator , 2021, Quantum.

[12]  John Preskill,et al.  Efficient estimation of Pauli observables by derandomization , 2021, Physical review letters.

[13]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[14]  Joonho Lee,et al.  Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction , 2020, PRX Quantum.

[15]  N. Killoran,et al.  Estimating the gradient and higher-order derivatives on quantum hardware , 2020, 2008.06517.

[16]  Patrick J. Coles,et al.  Error mitigation with Clifford quantum-circuit data , 2020, Quantum.

[17]  A. Greene,et al.  Realization of High-Fidelity CZ and ZZ -Free iSWAP Gates with a Tunable Coupler , 2020, 2011.01261.

[18]  Patrick J. Coles,et al.  Unified approach to data-driven quantum error mitigation , 2020, Physical Review Research.

[19]  L. Hollenberg,et al.  Quantum computed moments correction to variational estimates , 2020, Quantum.

[20]  B. Peng,et al.  Quantum simulations employing connected moments expansions. , 2020, The Journal of chemical physics.

[21]  Jay M. Gambetta,et al.  Mitigating measurement errors in multiqubit experiments , 2020, 2006.14044.

[22]  Kevin J. Sung,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[23]  B. Bauer,et al.  Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. , 2020, Chemical reviews.

[24]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[25]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[26]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[27]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[28]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[29]  Mark Howard,et al.  Simulation of quantum circuits by low-rank stabilizer decompositions , 2018, Quantum.

[30]  J. Ignacio Cirac,et al.  Analogue quantum chemistry simulation , 2018, Nature.

[31]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[32]  Alexandru Paler,et al.  Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity , 2018, Physical Review X.

[33]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[34]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[35]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[36]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[37]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[38]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[39]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[40]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[41]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[42]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[43]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[44]  Zijun Chen,et al.  Strong environmental coupling in a Josephson parametric amplifier , 2014, 1401.3799.

[45]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[46]  K. Koshino,et al.  Single-shot readout of a superconducting flux qubit with a flux-driven Josephson parametric amplifier , 2013, 1309.6706.

[47]  Yasunobu Nakamura,et al.  Dynamical decoupling and dephasing in interacting two-level systems. , 2012, Physical review letters.

[48]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[49]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[50]  R. Bartlett,et al.  A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations , 1991 .

[51]  Rodney J. Bartlett,et al.  Alternative coupled-cluster ansätze II. The unitary coupled-cluster method , 1989 .

[52]  Cioslowski Connected moments expansion: A new tool for quantum many-body theory. , 1987, Physical review letters.

[53]  R. Feynman Simulating physics with computers , 1999 .