A Multivariate Encryption Scheme with Rainbow

Multivariate Public Key Cryptosystems (MPKC) are a candidate of post-quantum cryptography. The MPKC signature scheme Rainbow is endowed of efficient signature generation and verification, while no major attack has been reported so far. In this paper, we propose a MPKC encryption scheme based on Rainbow. The public key of Rainbow is a surjective polynomial map, whereas the encryption scheme requires an injective polynomial map. We explain how to change the public key of Rainbow to an injective map.

[1]  Louis Goubin,et al.  FLASH, a Fast Multivariate Signature Algorithm , 2001, CT-RSA.

[2]  Thierry P. Berger,et al.  Reducing Key Length of the McEliece Cryptosystem , 2009, AFRICACRYPT.

[3]  Magnus Daum,et al.  On the Security of HFE, HFEv- and Quartz , 2003, Public Key Cryptography.

[4]  Louis Goubin,et al.  Unbalanced Oil and Vinegar Signature Schemes , 1999, EUROCRYPT.

[5]  Bo-Yin Yang,et al.  Square, a New Multivariate Encryption Scheme , 2009, CT-RSA.

[6]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[7]  Jintai Ding,et al.  Simple Matrix Scheme for Encryption , 2013, PQCrypto.

[8]  J. Faugère,et al.  On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations , 2004 .

[9]  Joseph H. Silverman,et al.  NTRU: A Ring-Based Public Key Cryptosystem , 1998, ANTS.

[10]  Bo-Yin Yang,et al.  l-Invertible Cycles for Multivariate Quadratic (MQ) Public Key Cryptography , 2007, Public Key Cryptography.

[11]  Bo-Yin Yang,et al.  TTS: Rank Attacks in Tame-Like Multivariate PKCs , 2004, IACR Cryptol. ePrint Arch..

[12]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[13]  Chen-Mou Cheng,et al.  New Differential-Algebraic Attacks and Reparametrization of Rainbow , 2008, ACNS.

[14]  Jintai Ding,et al.  Secure Variants of the Square Encryption Scheme , 2010, PQCrypto.

[15]  Scott A. Vanstone,et al.  Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms , 2001, CRYPTO.

[16]  Jacques Patarin,et al.  Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms , 1996, EUROCRYPT.

[17]  Bo-Yin Yang,et al.  A More Secure and Efficacious TTS Signature Scheme , 2003, ICISC.

[18]  Adi Shamir,et al.  Cryptanalysis of the Oil & Vinegar Signature Scheme , 1998, CRYPTO.

[19]  Olivier Billet,et al.  Cryptanalysis of Rainbow , 2006, SCN.

[20]  Jacques Stern,et al.  Total Break of the l-IC Signature Scheme , 2008, Public Key Cryptography.

[21]  Louis Goubin,et al.  C*-+ and HM: Variations Around Two Schemes of T. Matsumoto and H. Imai , 1998, ASIACRYPT.

[22]  Louis Goubin,et al.  Cryptanalysis of the TTM Cryptosystem , 2000, ASIACRYPT.

[23]  Bart Preneel,et al.  Taxonomy of Public Key Schemes based on the problem of Multivariate Quadratic equations , 2005, IACR Cryptol. ePrint Arch..

[24]  Christopher Wolf,et al.  Roots of Square: Cryptanalysis of Double-Layer Square and Square+ , 2011, PQCrypto.

[25]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[26]  Hideki Imai,et al.  Public Quadratic Polynominal-Tuples for Efficient Signature-Verification and Message-Encryption , 1988, EUROCRYPT.

[27]  Nemanja Kaloper Origami World , 2004 .

[28]  Bodo Möller Algorithms for Multi-exponentiation , 2001, Selected Areas in Cryptography.

[29]  Jacques Stern,et al.  Practical Cryptanalysis of SFLASH , 2007, CRYPTO.

[30]  Jintai Ding,et al.  The Cubic Simple Matrix Encryption Scheme , 2014, PQCrypto.

[31]  Jintai Ding,et al.  Inverting square systems algebraically is exponential , 2014, Finite Fields Their Appl..

[32]  T. T. Moh,et al.  A public key system with signature and master key functions , 1999 .

[33]  Jacques Patarin,et al.  Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt'88 , 1995, CRYPTO.

[34]  Adi Shamir,et al.  Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization , 1999, CRYPTO.

[35]  Jintai Ding,et al.  Rainbow, a New Multivariable Polynomial Signature Scheme , 2005, ACNS.

[36]  Jintai Ding,et al.  Multivariate Public Key Cryptosystems (Advances in Information Security) , 2006 .

[37]  Jintai Ding,et al.  Cryptanalysis of the new TTS scheme in CHES 2004 , 2006, International Journal of Information Security.

[38]  Stanislav Bulygin,et al.  CyclicRainbow - A Multivariate Signature Scheme with a Partially Cyclic Public Key , 2010, INDOCRYPT.

[39]  Stanislav Bulygin,et al.  Selecting Parameters for the Rainbow Signature Scheme , 2010, PQCrypto.

[40]  Bo-Yin Yang,et al.  All in the XL Family: Theory and Practice , 2004, ICISC.

[41]  Luk Bettale,et al.  Hybrid approach for solving multivariate systems over finite fields , 2009, J. Math. Cryptol..

[42]  Olivier Billet,et al.  Cryptanalysis of the Square Cryptosystems , 2009, ASIACRYPT.

[43]  Michael Scott,et al.  On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves , 2009, Pairing.

[44]  M. Scott,et al.  Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of Curves , 2011, Journal of Cryptology.

[45]  Jintai Ding,et al.  ZHFE, a New Multivariate Public Key Encryption Scheme , 2014, PQCrypto.

[46]  Jintai Ding,et al.  Simple Matrix - A Multivariate Public Key Cryptosystem (MPKC) for Encryption , 2015, Finite Fields Their Appl..