Stochastic approach to evolution of a quantum system interacting with environment in squeezed number state

[1]  G. Guo,et al.  Realistic and general model for quantum key distribution with entangled-photon sources , 2022, Physical Review A.

[2]  S. Filippov Multipartite Correlations in Quantum Collision Models , 2022, Entropy.

[3]  B. Baragiola,et al.  Master equations and quantum trajectories for squeezed wave packets , 2021, Physical Review A.

[4]  V. Giovannetti,et al.  Quantum collision models: Open system dynamics from repeated interactions , 2021, Physics Reports.

[5]  G. Sarbicki,et al.  Eternally non-Markovian dynamics of a qubit interacting with a single-photon wavepacket , 2020, New Journal of Physics.

[6]  A. Dąbrowska From a posteriori to a priori solutions for a two-level system interacting with a single-photon wavepacket , 2019, 1911.04194.

[7]  Guofeng Zhang,et al.  Quantum filtering for a two-level atom driven by two counter-propagating photons , 2019, Quantum Information Processing.

[8]  Gniewomir Sarbicki,et al.  Quantum trajectories for a system interacting with environment in N-photon state , 2018, Journal of Physics A: Mathematical and Theoretical.

[9]  Francesco Ciccarello,et al.  Collision models in quantum optics , 2017, 1712.04994.

[10]  Gerard J. Milburn,et al.  Qubit models of weak continuous measurements: markovian conditional and open-system dynamics , 2017, 1710.09523.

[11]  Rahul Trivedi,et al.  Scattering into one-dimensional waveguides from a coherently-driven quantum-optical system , 2017, Quantum.

[12]  Yao-Lung L. Fang,et al.  Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide , 2017, 1707.05946.

[13]  Gniewomir Sarbicki,et al.  Quantum trajectories for a system interacting with environment in a single-photon state: Counting and diffusive processes , 2017, 1706.07967.

[14]  Ben Q. Baragiola,et al.  Quantum trajectories for propagating Fock states , 2017, 1704.00101.

[15]  A. Dąbrowska Quantum Filtering Equations for a System Driven by Nonclassical Fields , 2016, Open Syst. Inf. Dyn..

[16]  Peter Zoller,et al.  Chiral quantum optics , 2016, Nature.

[17]  Mikolaj Lasota,et al.  Reducing detection noise of a photon pair in a dispersive medium by controlling its spectral entanglement , 2016, 1607.01783.

[18]  Guofeng Zhang,et al.  Continuous-Mode MultiPhoton Filtering , 2016, SIAM J. Control. Optim..

[19]  R. Mann,et al.  Unitarity, feedback, interactions—dynamics emergent from repeated measurements , 2016, 1605.04312.

[20]  C. Kurtsiefer,et al.  Time-resolved scattering of a single photon by a single atom , 2016, Nature Communications.

[21]  Walter T. Strunz,et al.  Collision model for non-Markovian quantum dynamics , 2016, 1603.00408.

[22]  Daoyi Dong,et al.  Exact analysis of the response of quantum systems to two-photons using a QSDE approach , 2015, 1509.06934.

[23]  John Gough,et al.  Quantum Trajectories for Squeezed Input Processes: Explicit Solutions , 2015, Open Syst. Inf. Dyn..

[24]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[25]  Andreas Reiserer,et al.  Cavity-based quantum networks with single atoms and optical photons , 2014, 1412.2889.

[26]  A. Dąbrowska,et al.  Belavkin filtering with squeezed light sources , 2014, 1405.7795.

[27]  B. Peaudecerf,et al.  Quantum feedback experiments stabilizing Fock states of light in a cavity , 2013 .

[28]  Brian J. Smith,et al.  Experimental generation of multi-photon Fock states. , 2012, Optics express.

[29]  M. James,et al.  Single photon quantum filtering using non-Markovian embeddings , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  A. Brańczyk,et al.  N-photon wave packets interacting with an arbitrary quantum system , 2012, 1202.3430.

[31]  Hendra Ishwara Nurdin,et al.  Quantum filtering for systems driven by fields in single photon states and superposition of coherent states using non-Markovian embeddings , 2011, Quantum Information Processing.

[32]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[33]  S. Aaronson,et al.  The computational complexity of linear optics , 2010, Theory Comput..

[34]  Clément Pellegrini,et al.  Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems , 2010 .

[35]  F Petruccione,et al.  Non-Markovian quantum repeated interactions and measurements , 2009, 0903.3859.

[36]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[37]  C. Pellegrini Existence, uniqueness and approximation of a stochastic Schrödinger equation: The diffusive case , 2007, 0709.1703.

[38]  P. Rohde,et al.  Spectral structure and decompositions of optical states, and their applications , 2006, quant-ph/0609004.

[39]  M. James,et al.  A Discrete Invitation to Quantum Filtering and Feedback Control , 2006, SIAM Rev..

[40]  Z. Ou Temporal distinguishability of an N -photon state and its characterization by quantum interference , 2006, quant-ph/0601118.

[41]  L. Bouten Filtering and Control in Quantum Optics , 2004, quant-ph/0410080.

[42]  John Edward Gough,et al.  Stochastic Schrödinger Equations as Limit of Discrete Filtering , 2004, Open Syst. Inf. Dyn..

[43]  Y. Pautrat,et al.  From Repeated to Continuous Quantum Interactions , 2003, math-ph/0311002.

[44]  J. Gough Quantum white noises and the master equation for Gaussian reference states , 2003, quant-ph/0309103.

[45]  T. Brun A simple model of quantum trajectories , 2001, quant-ph/0108132.

[46]  R. Tanas,et al.  Generalized master equation for a two-level atom in a strong field and tailored reservoirs , 2001 .

[47]  Thomas Pellizzari,et al.  Photon-Wavepackets as Flying Quantum Bits , 1998 .

[48]  S. Barnett,et al.  Influence of squeezing bandwidths on resonance fluorescence , 1996 .

[49]  V. Belavkin,et al.  Measurements continuous in time and a posteriori states in quantum mechanics , 1991, Journal of Physics A: Mathematical and General.

[50]  Parkins Rabi sideband narrowing via strongly driven resonance fluorescence in a narrow-bandwidth squeezed vacuum. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[51]  Blow,et al.  Continuum fields in quantum optics. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[52]  Knight,et al.  Properties of squeezed number states and squeezed thermal states. , 1989, Physical review. A, General physics.

[53]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[54]  M. D. Srinivas,et al.  Photon Counting Probabilities in Quantum Optics , 1981 .

[55]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[56]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[57]  D. Walls,et al.  Master equation for strongly interacting systems , 1973 .

[58]  B. R. Mollow Quantum Theory of Field Attenuation , 1968 .

[59]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[60]  Alberto Barchielli,et al.  Continual Measurements in Quantum Mechanics and Quantum Stochastic Calculus , 2006 .

[61]  Anna KOWALEWSKA-KUDe Aszyk Generalized master equation for a two-level atom in a strong é eld and tailored reservoirs , 2001 .

[62]  Z. Ficek,et al.  Response of a two-level atom to a narrow-bandwidth squeezed-vacuum excitation , 2000 .

[63]  B. Dalton,et al.  Spectral linewidth narrowing by a narrow bandwidth squeezed vacuum in a cavity , 1997 .

[64]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[65]  H. Carmichael An open systems approach to quantum optics , 1993 .

[66]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[67]  H. Nurdin,et al.  Quantum filtering for systems driven by fields in single photon states and superposition of coherent states using non-Markovian embeddings , 2022 .