Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites

The aim of this paper is to study the influence of fiber content on mechanical (i.e. tensile, flexural, impact, hardness and abrasion resistance) and thermal (i.e. TGA) properties of Kenaf bast fiber reinforced thermoplastic polyurethane (TPU) composites. The composite was prepared by melt-mixing method, followed by compression molding process. Different fiber loadings were prepared; namely, 20%, 30%, 40%, and 50% weight percent. A 30% fiber loading exhibited the best tensile strength, while modulus increased with increase of fiber content, and strain deteriorated with increase of fiber content. Flexural strength and modulus increased with increase of fiber loading. Increase of fiber loading resulted in decline in impact strength. Hardness increased by addition of 30% fiber content. Abrasion resistant decreased with increase of fiber loading. Fiber loading decreased thermal stability of the composite.

[1]  R. N. Kumar,et al.  Tensile properties of oil palm empty fruit bunch–polyurethane composites , 2001 .

[2]  K. Rao,et al.  Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo , 2011 .

[3]  R. Joffe,et al.  Mechanical performance of thermoplastic matrix natural fibre composites , 2008 .

[4]  Zachariah Oommen,et al.  A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres , 2002 .

[5]  K. Pickering Properties and performance of natural-fibre composites , 2008 .

[6]  S. M. Sapuan,et al.  Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis , 2012, Journal of Thermal Analysis and Calorimetry.

[7]  Sabu Thomas,et al.  Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites , 2004 .

[8]  Hanafi Ismail,et al.  The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites , 2002 .

[9]  S. M. Sapuan,et al.  Tensile and Impact Properties of Sugarcane Bagasse/Poly(vinyl Chloride) Composites , 2011 .

[10]  S. Wilberforce,et al.  Effect of fibre concentration, strain rate and weldline on mechanical properties of injection-moulded short glass fibre reinforced thermoplastic polyurethane , 2009, Journal of Materials Science.

[11]  Z. Ishak,et al.  Kenaf fiber reinforced composites: A review , 2011 .

[12]  M. Mariatti,et al.  Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites , 2008 .

[13]  U. Tewari,et al.  Two-body and three-body abrasive wear behaviour of polyaryletherketone composites , 2003 .

[14]  A. Chate,et al.  Natural-fibre-reinforced polyurethane microfoams , 2001 .

[15]  R. Nunes,et al.  Short fiber reinforced thermoplastic polyurethane elastomer composites , 1998 .

[16]  S. Sapuan,et al.  Impact Strength and Hardness Properties of Banana Pseudo‐Stem Filled Unplastisized PVC Composites , 2009 .

[17]  Mohd Sapuan Salit,et al.  Development of a new kenaf bast fiber-reinforced thermoplastic polyurethane composite , 2011, BioResources.

[18]  H. Rozman,et al.  The effects of NCO/OH ratio on propylene oxide‐modified oil palm empty fruit bunch‐based polyurethane composites , 2008 .

[19]  N. El-Tayeb Two-body abrasive behaviour of untreated SC and R-G fibres polyester composites , 2009 .

[20]  H. Khalil,et al.  Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites , 2010 .

[21]  S. Öztürk Effect of Fiber Loading on the Mechanical Properties of Kenaf and Fiberfrax Fiber-reinforced Phenol-Formaldehyde Composites , 2010 .

[22]  H. Rozman,et al.  Polyurethane (PU): oil palm empty fruit bunch (EFB) composites: the effect of EFBG reinforcement in mat form and isocyanate treatment on the mechanical properties , 2004 .

[23]  Khalina Abdan,et al.  KENAF FIBRES AS REINFORCEMENT FOR POLYMERIC COMPOSITES: A REVIEW , 2009 .

[24]  A. Retegi,et al.  Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling , 2005 .

[25]  Anil N. Netravali,et al.  Composites get greener , 2003 .

[26]  K. Oksman,et al.  Novel nanocomposites based on polyurethane and micro fibrillated cellulose , 2008 .

[27]  K. Badri,et al.  Palm‐based bio‐composites hybridized with kaolinite , 2007 .

[28]  H. Rozman,et al.  The mechanical and physical properties of polyurethane composites based on rice husk and polyethylene glycol , 2003 .

[29]  Anup K. Ghosh,et al.  On the abrasive wear behaviour of fabric-reinforced polyetherimide composites , 2002 .

[30]  Manjusri Misra,et al.  Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites , 2003 .

[31]  T. Amornsakchai,et al.  Fiber–matrix interactions in aramid‐short‐fiber‐reinforced thermoplastic polyurethane composites , 2003 .

[32]  S. M. Sapuan,et al.  Mechanical properties of pineapple leaf fibre reinforced polypropylene composites , 2006 .

[33]  S. Mohanty,et al.  Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites , 2006 .